Displaying similar documents to “Paired-domination”

Total domination subdivision numbers of graphs

Teresa W. Haynes, Michael A. Henning, Lora S. Hopkins (2004)

Discussiones Mathematicae Graph Theory

Similarity:

A set S of vertices in a graph G = (V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set of G. The total domination subdivision number of G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the total domination number. First we establish bounds on the total domination subdivision number...

γ-graphs of graphs

Gerd H. Fricke, Sandra M. Hedetniemi, Stephen T. Hedetniemi, Kevin R. Hutson (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A set S ⊆ V is a dominating set of a graph G = (V,E) if every vertex in V -S is adjacent to at least one vertex in S. The domination number γ(G) of G equals the minimum cardinality of a dominating set S in G; we say that such a set S is a γ-set. In this paper we consider the family of all γ-sets in a graph G and we define the γ-graph G(γ) = (V(γ), E(γ)) of G to be the graph whose vertices V(γ) correspond 1-to-1 with the γ-sets of G, and two γ-sets, say D₁ and D₂, are adjacent in E(γ)...

On the p-domination number of cactus graphs

Mostafa Blidia, Mustapha Chellali, Lutz Volkmann (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Let p be a positive integer and G = (V,E) a graph. A subset S of V is a p-dominating set if every vertex of V-S is dominated at least p times. The minimum cardinality of a p-dominating set a of G is the p-domination number γₚ(G). It is proved for a cactus graph G that γₚ(G) ⩽ (|V| + |Lₚ(G)| + c(G))/2, for every positive integer p ⩾ 2, where Lₚ(G) is the set of vertices of G of degree at most p-1 and c(G) is the number of odd cycles in G.

Graphs with disjoint dominating and paired-dominating sets

Justin Southey, Michael Henning (2010)

Open Mathematics

Similarity:

A dominating set of a graph is a set of vertices such that every vertex not in the set is adjacent to a vertex in the set, while a paired-dominating set of a graph is a dominating set such that the subgraph induced by the dominating set contains a perfect matching. In this paper, we show that no minimum degree is sufficient to guarantee the existence of a disjoint dominating set and a paired-dominating set. However, we prove that the vertex set of every cubic graph can be partitioned...

Gallai and anti-Gallai graphs of a graph

S. Aparna Lakshmanan, S. B. Rao, A. Vijayakumar (2007)

Mathematica Bohemica

Similarity:

The paper deals with graph operators—the Gallai graphs and the anti-Gallai graphs. We prove the existence of a finite family of forbidden subgraphs for the Gallai graphs and the anti-Gallai graphs to be H -free for any finite graph H . The case of complement reducible graphs—cographs is discussed in detail. Some relations between the chromatic number, the radius and the diameter of a graph and its Gallai and anti-Gallai graphs are also obtained.

Domination parameters of a graph with deleted special subset of edges

Maria Kwaśnik, Maciej Zwierzchowski (2001)

Discussiones Mathematicae Graph Theory

Similarity:

This paper contains a number of estimations of the split domination number and the maximal domination number of a graph with a deleted subset of edges which induces a complete subgraph Kₚ. We discuss noncomplete graphs having or not having hanging vertices. In particular, for p = 2 the edge deleted graphs are considered. The motivation of these problems comes from [2] and [6], where the authors, among other things, gave the lower and upper bounds on irredundance, independence and domination...

Domination and leaf density in graphs

Anders Sune Pedersen (2005)

Discussiones Mathematicae Graph Theory

Similarity:

The domination number γ(G) of a graph G is the minimum cardinality of a subset D of V(G) with the property that each vertex of V(G)-D is adjacent to at least one vertex of D. For a graph G with n vertices we define ε(G) to be the number of leaves in G minus the number of stems in G, and we define the leaf density ζ(G) to equal ε(G)/n. We prove that for any graph G with no isolated vertex, γ(G) ≤ n(1- ζ(G))/2 and we characterize the extremal graphs for this bound. Similar results are...

Paired- and induced paired-domination in {E,net}-free graphs

Oliver Schaudt (2012)

Discussiones Mathematicae Graph Theory

Similarity:

A dominating set of a graph is a vertex subset that any vertex belongs to or is adjacent to. Among the many well-studied variants of domination are the so-called paired-dominating sets. A paired-dominating set is a dominating set whose induced subgraph has a perfect matching. In this paper, we continue their study. We focus on graphs that do not contain the net-graph (obtained by attaching a pendant vertex to each vertex of the triangle) or the E-graph (obtained by...