The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Problems on fully irregular digraphs”

k-Kernels and some operations in digraphs

Hortensia Galeana-Sanchez, Laura Pastrana (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Let D be a digraph. V(D) denotes the set of vertices of D; a set N ⊆ V(D) is said to be a k-kernel of D if it satisfies the following two conditions: for every pair of different vertices u,v ∈ N it holds that every directed path between them has length at least k and for every vertex x ∈ V(D)-N there is a vertex y ∈ N such that there is an xy-directed path of length at most k-1. In this paper, we consider some operations on digraphs and prove the existence of k-kernels in digraphs formed...

Radii and centers in iterated line digraphs

Martin Knor, L'udovít Niepel (1996)

Discussiones Mathematicae Graph Theory

Similarity:

We show that the out-radius and the radius grow linearly, or "almost" linearly, in iterated line digraphs. Further, iterated line digraphs with a prescribed out-center, or a center, are constructed. It is shown that not every line digraph is admissible as an out-center of line digraph.

On graphs all of whose {C₃,T₃}-free arc colorations are kernel-perfect

Hortensia Galeana-Sánchez, José de Jesús García-Ruvalcaba (2001)

Discussiones Mathematicae Graph Theory

Similarity:

A digraph D is called a kernel-perfect digraph or KP-digraph when every induced subdigraph of D has a kernel. We call the digraph D an m-coloured digraph if the arcs of D are coloured with m distinct colours. A path P is monochromatic in D if all of its arcs are coloured alike in D. The closure of D, denoted by ζ(D), is the m-coloured digraph defined as follows: V( ζ(D)) = V(D), and A( ζ(D)) = ∪_{i} {(u,v) with colour i: there exists a monochromatic...

On the complete digraphs which are simply disconnected.

Davide C. Demaria, José Carlos de Souza Kiihl (1991)

Publicacions Matemàtiques

Similarity:

Homotopic methods are employed for the characterization of the complete digraphs which are the composition of non-trivial highly regular tournaments.