The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Connectivity of path graphs”

Path and cycle factors of cubic bipartite graphs

M. Kano, Changwoo Lee, Kazuhiro Suzuki (2008)

Discussiones Mathematicae Graph Theory

Similarity:

For a set S of connected graphs, a spanning subgraph F of a graph is called an S-factor if every component of F is isomorphic to a member of S. It was recently shown that every 2-connected cubic graph has a {Cₙ | n ≥ 4}-factor and a {Pₙ | n ≥ 6}-factor, where Cₙ and Pₙ denote the cycle and the path of order n, respectively (Kawarabayashi et al., J. Graph Theory, Vol. 39 (2002) 188-193). In this paper, we show that every connected cubic bipartite graph has a {Cₙ | n ≥ 6}-factor, and has...

The interval function of a connected graph and a characterization of geodetic graphs

Ladislav Nebeský (2001)

Mathematica Bohemica

Similarity:

The interval function (in the sense of H. M. Mulder) is an important tool for studying those properties of a connected graph that depend on the distance between vertices. An axiomatic characterization of the interval function of a connected graph was published by Nebeský in 1994. In Section 2 of the present paper, a simpler and shorter proof of that characterization will be given. In Section 3, a characterization of geodetic graphs will be established; this characterization will utilize...

The i-chords of cycles and paths

Terry A. McKee (2012)

Discussiones Mathematicae Graph Theory

Similarity:

An i-chord of a cycle or path is an edge whose endpoints are a distance i ≥ 2 apart along the cycle or path. Motivated by many standard graph classes being describable by the existence of chords, we investigate what happens when i-chords are required for specific values of i. Results include the following: A graph is strongly chordal if and only if, for i ∈ {4,6}, every cycle C with |V(C)| ≥ i has an (i/2)-chord. A graph is a threshold graph if and only if, for i ∈ {4,5}, every path...