Displaying similar documents to “Connectivity of path graphs”

Path and cycle factors of cubic bipartite graphs

M. Kano, Changwoo Lee, Kazuhiro Suzuki (2008)

Discussiones Mathematicae Graph Theory

Similarity:

For a set S of connected graphs, a spanning subgraph F of a graph is called an S-factor if every component of F is isomorphic to a member of S. It was recently shown that every 2-connected cubic graph has a {Cₙ | n ≥ 4}-factor and a {Pₙ | n ≥ 6}-factor, where Cₙ and Pₙ denote the cycle and the path of order n, respectively (Kawarabayashi et al., J. Graph Theory, Vol. 39 (2002) 188-193). In this paper, we show that every connected cubic bipartite graph has a {Cₙ | n ≥ 6}-factor, and has...

The interval function of a connected graph and a characterization of geodetic graphs

Ladislav Nebeský (2001)

Mathematica Bohemica

Similarity:

The interval function (in the sense of H. M. Mulder) is an important tool for studying those properties of a connected graph that depend on the distance between vertices. An axiomatic characterization of the interval function of a connected graph was published by Nebeský in 1994. In Section 2 of the present paper, a simpler and shorter proof of that characterization will be given. In Section 3, a characterization of geodetic graphs will be established; this characterization will utilize...

The i-chords of cycles and paths

Terry A. McKee (2012)

Discussiones Mathematicae Graph Theory

Similarity:

An i-chord of a cycle or path is an edge whose endpoints are a distance i ≥ 2 apart along the cycle or path. Motivated by many standard graph classes being describable by the existence of chords, we investigate what happens when i-chords are required for specific values of i. Results include the following: A graph is strongly chordal if and only if, for i ∈ {4,6}, every cycle C with |V(C)| ≥ i has an (i/2)-chord. A graph is a threshold graph if and only if, for i ∈ {4,5}, every path...