The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “k-Kernels and some operations in digraphs”

Monochromatic paths and monochromatic sets of arcs in 3-quasitransitive digraphs

Hortensia Galeana-Sánchez, R. Rojas-Monroy, B. Zavala (2009)

Discussiones Mathematicae Graph Theory

Similarity:

We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path is called monochromatic if all of its arcs are coloured alike. A set N of vertices of D is called a kernel by monochromatic paths if for every pair of vertices of N there is no monochromatic path between them and for every vertex v ∉ N there is a monochromatic path from v to N. We denote by A⁺(u) the set of arcs of D that have u as the initial vertex. We prove that if D is an m-coloured...

Kernels in monochromatic path digraphs

Hortensia Galeana-Sánchez, Laura Pastrana Ramírez, Hugo Alberto Rincón Mejía (2005)

Discussiones Mathematicae Graph Theory

Similarity:

We call the digraph D an m-coloured digraph if its arcs are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. Let D be an m-coloured digraph. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,v ∈ N there is no monochromatic directed path between them and (ii) for each vertex x ∈...

On the Existence of (k,l)-Kernels in Infinite Digraphs: A Survey

H. Galeana-Sánchez, C. Hernández-Cruz (2014)

Discussiones Mathematicae Graph Theory

Similarity:

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N, u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k −1)-kernel. This work is a survey of results proving sufficient conditions for the existence of (k, l)-kernels in infinite digraphs. Despite all the previous work in this direction...

A note on kernels and solutions in digraphs

Matúš Harminc, Roman Soták (1999)

Discussiones Mathematicae Graph Theory

Similarity:

For given nonnegative integers k,s an upper bound on the minimum number of vertices of a strongly connected digraph with exactly k kernels and s solutions is presented.

On graphs all of whose {C₃,T₃}-free arc colorations are kernel-perfect

Hortensia Galeana-Sánchez, José de Jesús García-Ruvalcaba (2001)

Discussiones Mathematicae Graph Theory

Similarity:

A digraph D is called a kernel-perfect digraph or KP-digraph when every induced subdigraph of D has a kernel. We call the digraph D an m-coloured digraph if the arcs of D are coloured with m distinct colours. A path P is monochromatic in D if all of its arcs are coloured alike in D. The closure of D, denoted by ζ(D), is the m-coloured digraph defined as follows: V( ζ(D)) = V(D), and A( ζ(D)) = ∪_{i} {(u,v) with colour i: there exists a monochromatic...

On (k,l)-kernels in D-join of digraphs

Waldemar Szumny, Andrzej Włoch, Iwona Włoch (2007)

Discussiones Mathematicae Graph Theory

Similarity:

In [5] the necessary and sufficient conditions for the existence of (k,l)-kernels in a D-join of digraphs were given if the digraph D is without circuits of length less than k. In this paper we generalize these results for an arbitrary digraph D. Moreover, we give the total number of (k,l)-kernels, k-independent sets and l-dominating sets in a D-join of digraphs.