The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Recognizable colorings of graphs”

The multiset chromatic number of a graph

Gary Chartrand, Futaba Okamoto, Ebrahim Salehi, Ping Zhang (2009)

Mathematica Bohemica

Similarity:

A vertex coloring of a graph G is a multiset coloring if the multisets of colors of the neighbors of every two adjacent vertices are different. The minimum k for which G has a multiset k -coloring is the multiset chromatic number χ m ( G ) of G . For every graph G , χ m ( G ) is bounded above by its chromatic number χ ( G ) . The multiset chromatic number is determined for every complete multipartite graph as well as for cycles and their squares, cubes, and fourth powers. It is conjectured that for each k 3 , there...

Set vertex colorings and joins of graphs

Futaba Okamoto, Craig W. Rasmussen, Ping Zhang (2009)

Czechoslovak Mathematical Journal

Similarity:

For a nontrivial connected graph G , let c V ( G ) be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G , the neighborhood color set NC ( v ) is the set of colors of the neighbors of v . The coloring c is called a set coloring if NC ( u ) NC ( v ) for every pair u , v of adjacent vertices of G . The minimum number of colors required of such a coloring is called the set chromatic number χ s ( G ) . A study is made of the set chromatic number of the join G + H of two graphs G and H . Sharp lower...

Recognizable colorings of cycles and trees

Michael J. Dorfling, Samantha Dorfling (2012)

Discussiones Mathematicae Graph Theory

Similarity:

For a graph G and a vertex-coloring c:V(G) → 1,2, ...,k, the color code of a vertex v is the (k+1)-tuple (a₀,a₁, ...,aₖ), where a₀ = c(v), and for 1 ≤ i ≤ k, a i is the number of neighbors of v colored i. A recognizable coloring is a coloring such that distinct vertices have distinct color codes. The recognition number of a graph is the minimum k for which G has a recognizable k-coloring. In this paper we prove three conjectures of Chartrand et al. in [8] regarding the recognition number...

On detectable colorings of graphs

Henry Escuadro, Ping Zhang (2005)

Mathematica Bohemica

Similarity:

Let G be a connected graph of order n 3 and let c E ( G ) { 1 , 2 , ... , k } be a coloring of the edges of G (where adjacent edges may be colored the same). For each vertex v of G , the color code of v with respect to c is the k -tuple c ( v ) = ( a 1 , a 2 , , a k ) , where a i is the number of edges incident with v that are colored i ( 1 i k ). The coloring c is detectable if distinct vertices have distinct color codes. The detection number det ( G ) of G is the minimum positive integer k for which G has a detectable k -coloring. We establish a formula for the...

Radio antipodal colorings of graphs

Gary Chartrand, David Erwin, Ping Zhang (2002)

Mathematica Bohemica

Similarity:

A radio antipodal coloring of a connected graph G with diameter d is an assignment of positive integers to the vertices of G , with x V ( G ) assigned c ( x ) , such that d ( u , v ) + | c ( u ) - c ( v ) | d for every two distinct vertices u , v of G , where d ( u , v ) is the distance between u and v in G . The radio antipodal coloring number a c ( c ) of a radio antipodal coloring c of G is the maximum color assigned to a vertex of G . The radio antipodal chromatic number a c ( G ) of G is min { a c ( c ) } over all radio antipodal colorings c of G . Radio antipodal chromatic numbers...