Displaying similar documents to “Decomposition of multigraphs”

On signed edge domination numbers of trees

Bohdan Zelinka (2002)

Mathematica Bohemica

Similarity:

The signed edge domination number of a graph is an edge variant of the signed domination number. The closed neighbourhood N G [ e ] of an edge e in a graph G is the set consisting of e and of all edges having a common end vertex with e . Let f be a mapping of the edge set E ( G ) of G into the set { - 1 , 1 } . If x N [ e ] f ( x ) 1 for each e E ( G ) , then f is called a signed edge dominating function on G . The minimum of the values x E ( G ) f ( x ) , taken over all signed edge dominating function f on G , is called the signed edge domination number...

Median of a graph with respect to edges

A.P. Santhakumaran (2012)

Discussiones Mathematicae Graph Theory

Similarity:

For any vertex v and any edge e in a non-trivial connected graph G, the distance sum d(v) of v is d ( v ) = u V d ( v , u ) , the vertex-to-edge distance sum d₁(v) of v is d ( v ) = e E d ( v , e ) , the edge-to-vertex distance sum d₂(e) of e is d ( e ) = v V d ( e , v ) and the edge-to-edge distance sum d₃(e) of e is d ( e ) = f E d ( e , f ) . The set M(G) of all vertices v for which d(v) is minimum is the median of G; the set M₁(G) of all vertices v for which d₁(v) is minimum is the vertex-to-edge median of G; the set M₂(G) of all edges e for which d₂(e) is minimum is the edge-to-vertex...

Lower bounds on signed edge total domination numbers in graphs

H. Karami, S. M. Sheikholeslami, Abdollah Khodkar (2008)

Czechoslovak Mathematical Journal

Similarity:

The open neighborhood N G ( e ) of an edge e in a graph G is the set consisting of all edges having a common end-vertex with e . Let f be a function on E ( G ) , the edge set of G , into the set { - 1 , 1 } . If x N G ( e ) f ( x ) 1 for each e E ( G ) , then f is called a signed edge total dominating function of G . The minimum of the values e E ( G ) f ( e ) , taken over all signed edge total dominating function f of G , is called the signed edge total domination number of G and is denoted by γ s t ' ( G ) . Obviously, γ s t ' ( G ) is defined only for graphs G which have no connected...

On k-intersection edge colourings

Rahul Muthu, N. Narayanan, C.R. Subramanian (2009)

Discussiones Mathematicae Graph Theory

Similarity:

We propose the following problem. For some k ≥ 1, a graph G is to be properly edge coloured such that any two adjacent vertices share at most k colours. We call this the k-intersection edge colouring. The minimum number of colours sufficient to guarantee such a colouring is the k-intersection chromatic index and is denoted χ’ₖ(G). Let fₖ be defined by f ( Δ ) = m a x G : Δ ( G ) = Δ χ ' ( G ) . We show that fₖ(Δ) = Θ(Δ²/k). We also discuss some open problems.

The signed matchings in graphs

Changping Wang (2008)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph with vertex set V(G) and edge set E(G). A signed matching is a function x: E(G) → -1,1 satisfying e E G ( v ) x ( e ) 1 for every v ∈ V(G), where E G ( v ) = u v E ( G ) | u V ( G ) . The maximum of the values of e E ( G ) x ( e ) , taken over all signed matchings x, is called the signed matching number and is denoted by β’₁(G). In this paper, we study the complexity of the maximum signed matching problem. We show that a maximum signed matching can be found in strongly polynomial-time. We present sharp upper and lower bounds on β’₁(G) for...

Connected resolving decompositions in graphs

Varaporn Saenpholphat, Ping Zhang (2003)

Mathematica Bohemica

Similarity:

For an ordered k -decomposition 𝒟 = { G 1 , G 2 , ... , G k } of a connected graph G and an edge e of G , the 𝒟 -code of e is the k -tuple c 𝒟 ( e ) = ( d ( e , G 1 ) , d ( e , G 2 ) , ... , d ( e , G k ) ), where d ( e , G i ) is the distance from e to G i . A decomposition 𝒟 is resolving if every two distinct edges of G have distinct 𝒟 -codes. The minimum k for which G has a resolving k -decomposition is its decomposition dimension dim d ( G ) . A resolving decomposition 𝒟 of G is connected if each G i is connected for 1 i k . The minimum k for which G ...