Displaying similar documents to “A note on periodicity of the 2-distance operator”

Remarks on partially square graphs, hamiltonicity and circumference

Hamamache Kheddouci (2001)

Discussiones Mathematicae Graph Theory

Similarity:

Given a graph G, its partially square graph G* is a graph obtained by adding an edge (u,v) for each pair u, v of vertices of G at distance 2 whenever the vertices u and v have a common neighbor x satisfying the condition N G ( x ) N G [ u ] N G [ v ] , where N G [ x ] = N G ( x ) x . In the case where G is a claw-free graph, G* is equal to G². We define σ ° = m i n x S d G ( x ) : S i s a n i n d e p e n d e n t s e t i n G * a n d | S | = t . We give for hamiltonicity and circumference new sufficient conditions depending on σ° and we improve some known results.

On the minus domination number of graphs

Hailong Liu, Liang Sun (2004)

Czechoslovak Mathematical Journal

Similarity:

Let G = ( V , E ) be a simple graph. A 3 -valued function f V ( G ) { - 1 , 0 , 1 } is said to be a minus dominating function if for every vertex v V , f ( N [ v ] ) = u N [ v ] f ( u ) 1 , where N [ v ] is the closed neighborhood of v . The weight of a minus dominating function f on G is f ( V ) = v V f ( v ) . The minus domination number of a graph G , denoted by γ - ( G ) , equals the minimum weight of a minus dominating function on G . In this paper, the following two results are obtained. (1) If G is a bipartite graph of order n , then γ - ( G ) 4 n + 1 - 1 - n . (2) For any negative integer k and any positive integer...

On the order of certain close to regular graphs without a matching of given size

Sabine Klinkenberg, Lutz Volkmann (2007)

Czechoslovak Mathematical Journal

Similarity:

A graph G is a { d , d + k } -graph, if one vertex has degree d + k and the remaining vertices of G have degree d . In the special case of k = 0 , the graph G is d -regular. Let k , p 0 and d , n 1 be integers such that n and p are of the same parity. If G is a connected { d , d + k } -graph of order n without a matching M of size 2 | M | = n - p , then we show in this paper the following: If d = 2 , then k 2 ( p + 2 ) and (i) n k + p + 6 . If d 3 is odd and t an integer with 1 t p + 2 , then (ii) n d + k + 1 for k d ( p + 2 ) , (iii) n d ( p + 3 ) + 2 t + 1 for d ( p + 2 - t ) + t k d ( p + 3 - t ) + t - 3 , (iv) n d ( p + 3 ) + 2 p + 7 for k p . If d 4 is even, then (v) n d + k + 2 - η for k d ( p + 3 ) + p + 4 + η , (vi) n d + k + p + 2 - 2 t = d ( p + 4 ) + p + 6 for k = d ( p + 3 ) + 4 + 2 t and p 1 ,...

Domination Subdivision Numbers

Teresa W. Haynes, Sandra M. Hedetniemi, Stephen T. Hedetniemi, David P. Jacobs, James Knisely, Lucas C. van der Merwe (2001)

Discussiones Mathematicae Graph Theory

Similarity:

A set S of vertices of a graph G = (V,E) is a dominating set if every vertex of V-S is adjacent to some vertex in S. The domination number γ(G) is the minimum cardinality of a dominating set of G, and the domination subdivision number s d γ ( G ) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the domination number. Arumugam conjectured that 1 s d γ ( G ) 3 for any graph G. We give a counterexample to this conjecture. On the other hand,...

On the total k-domination number of graphs

Adel P. Kazemi (2012)

Discussiones Mathematicae Graph Theory

Similarity:

Let k be a positive integer and let G = (V,E) be a simple graph. The k-tuple domination number γ × k ( G ) of G is the minimum cardinality of a k-tuple dominating set S, a set that for every vertex v ∈ V, | N G [ v ] S | k . Also the total k-domination number γ × k , t ( G ) of G is the minimum cardinality of a total k -dominating set S, a set that for every vertex v ∈ V, | N G ( v ) S | k . The k-transversal number τₖ(H) of a hypergraph H is the minimum size of a subset S ⊆ V(H) such that |S ∩e | ≥ k for every edge e ∈ E(H). We know that for...

Distance in stratified graphs

Gary Chartrand, Lisa Hansen, Reza Rashidi, Naveed Sherwani (2000)

Czechoslovak Mathematical Journal

Similarity:

A graph G is stratified if its vertex set is partitioned into classes, called strata. If there are k strata, then G is k -stratified. These graphs were introduced to study problems in VLSI design. The strata in a stratified graph are also referred to as color classes. For a color X in a stratified graph G , the X -eccentricity e X ( v ) of a vertex v of G is the distance between v and an X -colored vertex furthest from v . The minimum X -eccentricity among the vertices of G is the X -radius r a d X G of G ...

Potentially H-bigraphic sequences

Michael Ferrara, Michael Jacobson, John Schmitt, Mark Siggers (2009)

Discussiones Mathematicae Graph Theory

Similarity:

We extend the notion of a potentially H-graphic sequence as follows. Let A and B be nonnegative integer sequences. The sequence pair S = (A,B) is said to be bigraphic if there is some bipartite graph G = (X ∪ Y,E) such that A and B are the degrees of the vertices in X and Y, respectively. If S is a bigraphic pair, let σ(S) denote the sum of the terms in A. Given a bigraphic pair S, and a fixed bipartite graph H, we say that S is potentially H-bigraphic if there is some realization of...

Domination and independence subdivision numbers of graphs

Teresa W. Haynes, Sandra M. Hedetniemi, Stephen T. Hedetniemi (2000)

Discussiones Mathematicae Graph Theory

Similarity:

The domination subdivision number s d γ ( G ) of a graph is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the domination number. Arumugam showed that this number is at most three for any tree, and conjectured that the upper bound of three holds for any graph. Although we do not prove this interesting conjecture, we give an upper bound for the domination subdivision number for any graph G in terms of the minimum degrees of...

The extremal irregularity of connected graphs with given number of pendant vertices

Xiaoqian Liu, Xiaodan Chen, Junli Hu, Qiuyun Zhu (2022)

Czechoslovak Mathematical Journal

Similarity:

The irregularity of a graph G = ( V , E ) is defined as the sum of imbalances | d u - d v | over all edges u v E , where d u denotes the degree of the vertex u in G . This graph invariant, introduced by Albertson in 1997, is a measure of the defect of regularity of a graph. In this paper, we completely determine the extremal values of the irregularity of connected graphs with n vertices and p pendant vertices ( 1 p n - 1 ), and characterize the corresponding extremal graphs.