Displaying similar documents to “The leafage of a chordal graph”

On dominating the Cartesian product of a graph and K₂

Bert L. Hartnell, Douglas F. Rall (2004)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we consider the Cartesian product of an arbitrary graph and a complete graph of order two. Although an upper and lower bound for the domination number of this product follow easily from known results, we are interested in the graphs that actually attain these bounds. In each case, we provide an infinite class of graphs to show that the bound is sharp. The graphs that achieve the lower bound are of particular interest given the special nature of their dominating sets and...

Light Graphs In Planar Graphs Of Large Girth

Peter Hudák, Mária Maceková, Tomáš Madaras, Pavol Široczki (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A graph H is defined to be light in a graph family 𝒢 if there exist finite numbers φ(H, 𝒢) and w(H, 𝒢) such that each G ∈ 𝒢 which contains H as a subgraph, also contains its isomorphic copy K with ΔG(K) ≤ φ(H, 𝒢) and ∑x∈V(K) degG(x) ≤ w(H, 𝒢). In this paper, we investigate light graphs in families of plane graphs of minimum degree 2 with prescribed girth and no adjacent 2-vertices, specifying several necessary conditions for their lightness and providing sharp bounds on φ and w...

Bound graph polysemy.

Tanenbaum, Paul J. (2000)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

The inertia of unicyclic graphs and bicyclic graphs

Ying Liu (2013)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let G be a graph with n vertices and ν(G) be the matching number of G. The inertia of a graph G, In(G) = (n₊,n₋,n₀) is an integer triple specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix A(G), respectively. Let η(G) = n₀ denote the nullity of G (the multiplicity of the eigenvalue zero of G). It is well known that if G is a tree, then η(G) = n - 2ν(G). Guo et al. [Ji-Ming Guo, Weigen Yan and Yeong-Nan Yeh. On the nullity and the matching number...

The Thickness of Amalgamations and Cartesian Product of Graphs

Yan Yang, Yichao Chen (2017)

Discussiones Mathematicae Graph Theory

Similarity:

The thickness of a graph is the minimum number of planar spanning subgraphs into which the graph can be decomposed. It is a measurement of the closeness to the planarity of a graph, and it also has important applications to VLSI design, but it has been known for only few graphs. We obtain the thickness of vertex-amalgamation and bar-amalgamation of graphs, the lower and upper bounds for the thickness of edge-amalgamation and 2-vertex-amalgamation of graphs, respectively. We also study...

Note on enumeration of labeled split graphs

Vladislav Bína, Jiří Přibil (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The paper brings explicit formula for enumeration of vertex-labeled split graphs with given number of vertices. The authors derive this formula combinatorially using an auxiliary assertion concerning number of split graphs with given clique number. In conclusion authors discuss enumeration of vertex-labeled bipartite graphs, i.e., a graphical class defined in a similar manner to the class of split graphs.

Relations between the domination parameters and the chromatic index of a graph

Włodzimierz Ulatowski (2009)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we show upper bounds for the sum and the product of the lower domination parameters and the chromatic index of a graph. We also present some families of graphs for which these upper bounds are achieved. Next, we give a lower bound for the sum of the upper domination parameters and the chromatic index. This lower bound is a function of the number of vertices of a graph and a new graph parameter which is defined here. In this case we also characterize graphs for which a respective...

Graphs of low chordality.

Chandran, L.Sunil, Lozin, Vadim V., Subramanian, C.R. (2005)

Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]

Similarity:

2-distance 4-colorability of planar subcubic graphs with girth at least 22

Oleg V. Borodin, Anna O. Ivanova (2012)

Discussiones Mathematicae Graph Theory

Similarity:

The trivial lower bound for the 2-distance chromatic number χ₂(G) of any graph G with maximum degree Δ is Δ+1. It is known that χ₂ = Δ+1 if the girth g of G is at least 7 and Δ is large enough. There are graphs with arbitrarily large Δ and g ≤ 6 having χ₂(G) ≥ Δ+2. We prove the 2-distance 4-colorability of planar subcubic graphs with g ≥ 22.

Two new classes of trees embeddable into hypercubes

Mounira Nekri, Abdelhafid Berrachedi (2010)

RAIRO - Operations Research

Similarity:

The problem of embedding graphs into other graphs is much studied in the graph theory. In fact, much effort has been devoted to determining the conditions under which a graph G is a subgraph of a graph H, having a particular structure. An important class to study is the set of graphs which are embeddable into a hypercube. This importance results from the remarkable properties of the hypercube and its use in several domains, such as: the coding theory, transfer of information, multicriteria...

Sharp Upper Bounds on the Clar Number of Fullerene Graphs

Yang Gao, Heping Zhang (2018)

Discussiones Mathematicae Graph Theory

Similarity:

The Clar number of a fullerene graph with n vertices is bounded above by ⌊n/6⌋ − 2 and this bound has been improved to ⌊n/6⌋ − 3 when n is congruent to 2 modulo 6. We can construct at least one fullerene graph attaining the upper bounds for every even number of vertices n ≥ 20 except n = 22 and n = 30.

Degree Sequences of Monocore Graphs

Allan Bickle (2014)

Discussiones Mathematicae Graph Theory

Similarity:

A k-monocore graph is a graph which has its minimum degree and degeneracy both equal to k. Integer sequences that can be the degree sequence of some k-monocore graph are characterized as follows. A nonincreasing sequence of integers d0, . . . , dn is the degree sequence of some k-monocore graph G, 0 ≤ k ≤ n − 1, if and only if k ≤ di ≤ min {n − 1, k + n − i} and ⨊di = 2m, where m satisfies [...] ≤ m ≤ k ・ n − [...] .