Displaying similar documents to “(k,l)-kernels, (k,l)-semikernels, k-Grundy functions and duality for state splittings”

On (k,l)-kernels in D-join of digraphs

Waldemar Szumny, Andrzej Włoch, Iwona Włoch (2007)

Discussiones Mathematicae Graph Theory

Similarity:

In [5] the necessary and sufficient conditions for the existence of (k,l)-kernels in a D-join of digraphs were given if the digraph D is without circuits of length less than k. In this paper we generalize these results for an arbitrary digraph D. Moreover, we give the total number of (k,l)-kernels, k-independent sets and l-dominating sets in a D-join of digraphs.

On (k,l)-kernels of special superdigraphs of Pₘ and Cₘ

Magdalena Kucharska, Maria Kwaśnik (2001)

Discussiones Mathematicae Graph Theory

Similarity:

The concept of (k,l)-kernels of digraphs was introduced in [2]. Next, H. Galeana-Sanchez [4] proved a sufficient condition for a digraph to have a (k,l)-kernel. The result generalizes the well-known theorem of P. Duchet and it is formulated in terms of symmetric pairs of arcs. Our aim is to give necessary and sufficient conditions for digraphs without symmetric pairs of arcs to have a (k,l)-kernel. We restrict our attention to special superdigraphs of digraphs Pₘ and Cₘ.

A sufficient condition for the existence of k-kernels in digraphs

H. Galeana-Sánchez, H.A. Rincón-Mejía (1998)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper, we prove the following sufficient condition for the existence of k-kernels in digraphs: Let D be a digraph whose asymmetrical part is strongly conneted and such that every directed triangle has at least two symmetrical arcs. If every directed cycle γ of D with l(γ) ≢ 0 (mod k), k ≥ 2 satisfies at least one of the following properties: (a) γ has two symmetrical arcs, (b) γ has four short chords. Then D has a k-kernel. This result generalizes some previous...

k-kernels in generalizations of transitive digraphs

Hortensia Galeana-Sánchez, César Hernández-Cruz (2011)

Discussiones Mathematicae Graph Theory

Similarity:

Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k,l)-kernel N of D is a k-independent set of vertices (if u,v ∈ N, u ≠ v, then d(u,v), d(v,u) ≥ k) and l-absorbent (if u ∈ V(D)-N then there exists v ∈ N such that d(u,v) ≤ l). A k-kernel is a (k,k-1)-kernel. Quasi-transitive, right-pretransitive and left-pretransitive digraphs are generalizations of transitive digraphs. In this paper the following results are proved:...

A note on kernels and solutions in digraphs

Matúš Harminc, Roman Soták (1999)

Discussiones Mathematicae Graph Theory

Similarity:

For given nonnegative integers k,s an upper bound on the minimum number of vertices of a strongly connected digraph with exactly k kernels and s solutions is presented.

On the Existence of (k,l)-Kernels in Infinite Digraphs: A Survey

H. Galeana-Sánchez, C. Hernández-Cruz (2014)

Discussiones Mathematicae Graph Theory

Similarity:

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N, u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k −1)-kernel. This work is a survey of results proving sufficient conditions for the existence of (k, l)-kernels in infinite digraphs. Despite all the previous work in this direction...

k-Kernels and some operations in digraphs

Hortensia Galeana-Sanchez, Laura Pastrana (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Let D be a digraph. V(D) denotes the set of vertices of D; a set N ⊆ V(D) is said to be a k-kernel of D if it satisfies the following two conditions: for every pair of different vertices u,v ∈ N it holds that every directed path between them has length at least k and for every vertex x ∈ V(D)-N there is a vertex y ∈ N such that there is an xy-directed path of length at most k-1. In this paper, we consider some operations on digraphs and prove the existence of k-kernels in digraphs formed...

Radii and centers in iterated line digraphs

Martin Knor, L'udovít Niepel (1996)

Discussiones Mathematicae Graph Theory

Similarity:

We show that the out-radius and the radius grow linearly, or "almost" linearly, in iterated line digraphs. Further, iterated line digraphs with a prescribed out-center, or a center, are constructed. It is shown that not every line digraph is admissible as an out-center of line digraph.

Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel

Hortensia Galeana-Sánchez (2004)

Discussiones Mathematicae Graph Theory

Similarity:

A kernel N of a digraph D is an independent set of vertices of D such that for every w ∈ V(D)-N there exists an arc from w to N. If every induced subdigraph of D has a kernel, D is said to be a kernel-perfect digraph. In this paper I investigate some sufficient conditions for a digraph to have a kernel by asking for the existence of certain diagonals or symmetrical arcs in each odd directed cycle whose length is at most 2α(D)+1, where α(D) is the maximum cardinality of an independent...