Displaying similar documents to “On the structure of plane graphs of minimum face size 5”

On light subgraphs in plane graphs of minimum degree five

Stanislav Jendrol', Tomáš Madaras (1996)

Discussiones Mathematicae Graph Theory

Similarity:

A subgraph of a plane graph is light if the sum of the degrees of the vertices of the subgraph in the graph is small. It is well known that a plane graph of minimum degree five contains light edges and light triangles. In this paper we show that every plane graph of minimum degree five contains also light stars K 1 , 3 and K 1 , 4 and a light 4-path P₄. The results obtained for K 1 , 3 and P₄ are best possible.

On local structure of 1-planar graphs of minimum degree 5 and girth 4

Dávid Hudák, Tomás Madaras (2009)

Discussiones Mathematicae Graph Theory

Similarity:

A graph is 1-planar if it can be embedded in the plane so that each edge is crossed by at most one other edge. We prove that each 1-planar graph of minimum degree 5 and girth 4 contains (1) a 5-vertex adjacent to an ≤ 6-vertex, (2) a 4-cycle whose every vertex has degree at most 9, (3) a K 1 , 4 with all vertices having degree at most 11.

On integral sum graphs with a saturated vertex

Zhibo Chen (2010)

Czechoslovak Mathematical Journal

Similarity:

As introduced by F. Harary in 1994, a graph G is said to be an i n t e g r a l s u m g r a p h if its vertices can be given a labeling f with distinct integers so that for any two distinct vertices u and v of G , u v is an edge of G if and only if f ( u ) + f ( v ) = f ( w ) for some vertex w in G . We prove that every integral sum graph with a saturated vertex, except the complete graph K 3 , has edge-chromatic number equal to its maximum degree. (A vertex of a graph G is said to be if it is adjacent to every...

Join of two graphs admits a nowhere-zero 3 -flow

Saieed Akbari, Maryam Aliakbarpour, Naryam Ghanbari, Emisa Nategh, Hossein Shahmohamad (2014)

Czechoslovak Mathematical Journal

Similarity:

Let G be a graph, and λ the smallest integer for which G has a nowhere-zero λ -flow, i.e., an integer λ for which G admits a nowhere-zero λ -flow, but it does not admit a ( λ - 1 ) -flow. We denote the minimum flow number of G by Λ ( G ) . In this paper we show that if G and H are two arbitrary graphs and G has no isolated vertex, then Λ ( G H ) 3 except two cases: (i) One of the graphs G and H is K 2 and the other is 1 -regular. (ii) H = K 1 and G is a graph with at least one isolated vertex or a component whose every...

Note on independent sets of a graph

Jaroslav Ivančo (1994)

Mathematica Bohemica

Similarity:

Let the number of k -element sets of independent vertices and edges of a graph G be denoted by n ( G , k ) and m ( G , k ) , respectively. It is shown that the graphs whose every component is a circuit are the only graphs for which the equality n ( G , k ) = m ( G , k ) is satisfied for all values of k .

Homogeneously embedding stratified graphs in stratified graphs

Gary Chartrand, Donald W. Vanderjagt, Ping Zhang (2005)

Mathematica Bohemica

Similarity:

A 2-stratified graph G is a graph whose vertex set has been partitioned into two subsets, called the strata or color classes of G . Two 2 -stratified graphs G and H are isomorphic if there exists a color-preserving isomorphism φ from G to H . A 2 -stratified graph G is said to be homogeneously embedded in a 2 -stratified graph H if for every vertex x of G and every vertex y of H , where x and y are colored the same, there exists an induced 2 -stratified subgraph H ' of H containing y and a color-preserving...

Degree-continuous graphs

John Gimbel, Ping Zhang (2001)

Czechoslovak Mathematical Journal

Similarity:

A graph G is degree-continuous if the degrees of every two adjacent vertices of G differ by at most 1. A finite nonempty set S of integers is convex if k S for every integer k with min ( S ) k max ( S ) . It is shown that for all integers r > 0 and s 0 and a convex set S with min ( S ) = r and max ( S ) = r + s , there exists a connected degree-continuous graph G with the degree set S and diameter 2 s + 2 . The minimum order of a degree-continuous graph with a prescribed degree set is studied. Furthermore, it is shown that for every graph G and convex...