Displaying similar documents to “Spanning trees with many or few colors in edge-colored graphs”

The color-balanced spanning tree problem

Štefan Berežný, Vladimír Lacko (2005)

Kybernetika

Similarity:

Suppose a graph G = ( V , E ) whose edges are partitioned into p disjoint categories (colors) is given. In the color-balanced spanning tree problem a spanning tree is looked for that minimizes the variability in the number of edges from different categories. We show that polynomiality of this problem depends on the number p of categories and present some polynomial algorithm.

The 3-Rainbow Index of a Graph

Lily Chen, Xueliang Li, Kang Yang, Yan Zhao (2015)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ ℕ, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex subset S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of V (G) is called the k-rainbow index of G, denoted by rxk(G)....

Graphs with 3-Rainbow Index n − 1 and n − 2

Xueliang Li, Ingo Schiermeyer, Kang Yang, Yan Zhao (2015)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V (G),E(G)) be a nontrivial connected graph of order n with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree connecting S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of V (G) is called the k-rainbow index of...

Graphs with 4-Rainbow Index 3 and n − 1

Xueliang Li, Ingo Schiermeyer, Kang Yang, Yan Zhao (2015)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ ℕ, where adjacent edges may be colored the same. A tree T in G is called a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for every set S of k vertices of V (G) is called the k-rainbow index of G, denoted...

Locally bounded -colorings of trees

C. Bentz, C. Picouleau (2009)

RAIRO - Operations Research

Similarity:

Given a tree with vertices, we show, by using a dynamic programming approach, that the problem of finding a 3-coloring of respecting local (, associated with prespecified subsets of vertices) color bounds can be solved in log) time. We also show that our algorithm can be adapted to the case of -colorings for fixed .

A few remarks on the history of MST-problem

Jaroslav Nešetřil (1997)

Archivum Mathematicum

Similarity:

On the background of Borůvka’s pioneering work we present a survey of the development related to the Minimum Spanning Tree Problem. We also complement the historical paper Graham-Hell [GH] by a few remarks and provide an update of the extensive literature devoted to this problem.