Displaying similar documents to “On the packing of two copies of a caterpillar in its third power”

Generalizations of the tree packing conjecture

Dániel Gerbner, Balázs Keszegh, Cory Palmer (2012)

Discussiones Mathematicae Graph Theory

Similarity:

The Gyárfás tree packing conjecture asserts that any set of trees with 2,3,...,k vertices has an (edge-disjoint) packing into the complete graph on k vertices. Gyárfás and Lehel proved that the conjecture holds in some special cases. We address the problem of packing trees into k-chromatic graphs. In particular, we prove that if all but three of the trees are stars then they have a packing into any k-chromatic graph. We also consider several other generalizations of the conjecture. ...

An inequality chain of domination parameters for trees

E.J. Cockayne, O. Favaron, J. Puech, C.M. Mynhardt (1998)

Discussiones Mathematicae Graph Theory

Similarity:

We prove that the smallest cardinality of a maximal packing in any tree is at most the cardinality of an R-annihilated set. As a corollary to this result we point out that a set of parameters of trees involving packing, perfect neighbourhood, R-annihilated, irredundant and dominating sets is totally ordered. The class of trees for which all these parameters are equal is described and we give an example of a tree in which most of them are distinct.

Packing of graphs

Woźniak Mariusz

Similarity:

PrefaceThere are two basic reference texts on packing theory: the last chapter of Bollobás's book [6] (1978) and the 4th chapter of Yap's book [85] (1986). They still remain the main references to packing problems. However, many papers related to these problems have recently been published and the reason for writing this survey is to gather in a systematic form results scattered throughout the literature.I wish I could name all who deserve my thanks. I am particularly grateful to A....

Packing Parameters in Graphs

I. Sahul Hamid, S. Saravanakumar (2015)

Discussiones Mathematicae Graph Theory

Similarity:

In a graph G = (V,E), a non-empty set S ⊆ V is said to be an open packing set if no two vertices of S have a common neighbour in G. An open packing set which is not a proper subset of any open packing set is called a maximal open packing set. The minimum and maximum cardinalities of a maximal open packing set are respectively called the lower open packing number and the open packing number and are denoted by ρoL and ρo. In this paper, we present some bounds on these parameters. ...

Labeled Embedding Of (n, n-2)-Graphs In Their Complements

M.-A. Tahraoui, E. Duchêne, H. Kheddouci (2017)

Discussiones Mathematicae Graph Theory

Similarity:

Graph packing generally deals with unlabeled graphs. In [4], the authors have introduced a new variant of the graph packing problem, called the labeled packing of a graph. This problem has recently been studied on trees [M.A. Tahraoui, E. Duchêne and H. Kheddouci, Labeled 2-packings of trees, Discrete Math. 338 (2015) 816-824] and cycles [E. Duchˆene, H. Kheddouci, R.J. Nowakowski and M.A. Tahraoui, Labeled packing of graphs, Australas. J. Combin. 57 (2013) 109-126]. In this note, we...

Universal container for packing rectangles

Janusz Januszewski (2002)

Colloquium Mathematicae

Similarity:

The aim of the paper is to find a rectangle with the least area into which each sequence of rectangles of sides not greater than 1 with total area 1 can be packed.

Packing the Hypercube

David Offner (2014)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph that is a subgraph of some n-dimensional hypercube Qn. For sufficiently large n, Stout [20] proved that it is possible to pack vertex- disjoint copies of G in Qn so that any proportion r < 1 of the vertices of Qn are covered by the packing. We prove an analogous theorem for edge-disjoint packings: For sufficiently large n, it is possible to pack edge-disjoint copies of G in Qn so that any proportion r < 1 of the edges of Qn are covered by the packing.