Displaying similar documents to “Relations between the domination parameters and the chromatic index of a graph”

Sharp Upper Bounds on the Clar Number of Fullerene Graphs

Yang Gao, Heping Zhang (2018)

Discussiones Mathematicae Graph Theory

Similarity:

The Clar number of a fullerene graph with n vertices is bounded above by ⌊n/6⌋ − 2 and this bound has been improved to ⌊n/6⌋ − 3 when n is congruent to 2 modulo 6. We can construct at least one fullerene graph attaining the upper bounds for every even number of vertices n ≥ 20 except n = 22 and n = 30.

On dominating the Cartesian product of a graph and K₂

Bert L. Hartnell, Douglas F. Rall (2004)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we consider the Cartesian product of an arbitrary graph and a complete graph of order two. Although an upper and lower bound for the domination number of this product follow easily from known results, we are interested in the graphs that actually attain these bounds. In each case, we provide an infinite class of graphs to show that the bound is sharp. The graphs that achieve the lower bound are of particular interest given the special nature of their dominating sets and...

Bound graph polysemy.

Tanenbaum, Paul J. (2000)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Bounds on the Signed 2-Independence Number in Graphs

Lutz Volkmann (2013)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a finite and simple graph with vertex set V (G), and let f V (G) → {−1, 1} be a two-valued function. If ∑x∈N|v| f(x) ≤ 1 for each v ∈ V (G), where N[v] is the closed neighborhood of v, then f is a signed 2-independence function on G. The weight of a signed 2-independence function f is w(f) =∑v∈V (G) f(v). The maximum of weights w(f), taken over all signed 2-independence functions f on G, is the signed 2-independence number α2s(G) of G. In this work, we mainly present upper bounds...

Equitable coloring of Kneser graphs

Robert Fidytek, Hanna Furmańczyk, Paweł Żyliński (2009)

Discussiones Mathematicae Graph Theory

Similarity:

The Kneser graph K(n,k) is the graph whose vertices correspond to k-element subsets of set {1,2,...,n} and two vertices are adjacent if and only if they represent disjoint subsets. In this paper we study the problem of equitable coloring of Kneser graphs, namely, we establish the equitable chromatic number for graphs K(n,2) and K(n,3). In addition, for sufficiently large n, a tight upper bound on equitable chromatic number of graph K(n,k) is given. Finally, the cases of K(2k,k) and K(2k+1,k)...

Vertex coloring the square of outerplanar graphs of low degree

Geir Agnarsson, Magnús M. Halldórsson (2010)

Discussiones Mathematicae Graph Theory

Similarity:

Vertex colorings of the square of an outerplanar graph have received a lot of attention recently. In this article we prove that the chromatic number of the square of an outerplanar graph of maximum degree Δ = 6 is 7. The optimal upper bound for the chromatic number of the square of an outerplanar graph of maximum degree Δ ≠ 6 is known. Hence, this mentioned chromatic number of 7 is the last and only unknown upper bound of the chromatic number in terms of Δ.

The leafage of a chordal graph

In-Jen Lin, Terry A. McKee, Douglas B. West (1998)

Discussiones Mathematicae Graph Theory

Similarity:

The leafage l(G) of a chordal graph G is the minimum number of leaves of a tree in which G has an intersection representation by subtrees. We obtain upper and lower bounds on l(G) and compute it on special classes. The maximum of l(G) on n-vertex graphs is n - lg n - 1/2 lg lg n + O(1). The proper leafage l*(G) is the minimum number of leaves when no subtree may contain another; we obtain upper and lower bounds on l*(G). Leafage equals proper leafage on claw-free chordal graphs. We use...

On the Totalk-Domination in Graphs

Sergio Bermudo, Juan C. Hernández-Gómez, José M. Sigarreta (2018)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V, E) be a graph; a set S ⊆ V is a total k-dominating set if every vertex v ∈ V has at least k neighbors in S. The total k-domination number γkt(G) is the minimum cardinality among all total k-dominating sets. In this paper we obtain several tight bounds for the total k-domination number of a graph. In particular, we investigate the relationship between the total k-domination number of a graph and the order, the size, the girth, the minimum and maximum degree, the diameter,...

Lower bounds for the domination number

Ermelinda Delaviña, Ryan Pepper, Bill Waller (2010)

Discussiones Mathematicae Graph Theory

Similarity:

In this note, we prove several lower bounds on the domination number of simple connected graphs. Among these are the following: the domination number is at least two-thirds of the radius of the graph, three times the domination number is at least two more than the number of cut-vertices in the graph, and the domination number of a tree is at least as large as the minimum order of a maximal matching.

Some applications of pq-groups in graph theory

Geoffrey Exoo (2004)

Discussiones Mathematicae Graph Theory

Similarity:

We describe some new applications of nonabelian pq-groups to construction problems in Graph Theory. The constructions include the smallest known trivalent graph of girth 17, the smallest known regular graphs of girth five for several degrees, along with four edge colorings of complete graphs that improve lower bounds on classical Ramsey numbers.

Some Sharp Bounds on the Negative Decision Number of Graphs

Hongyu Liang (2013)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph. A function f : V → {-1,1} is called a bad function of G if ∑u∈NG(v) f(u) ≤ 1 for all v ∈ V where NG(v) denotes the set of neighbors of v in G. The negative decision number of G, introduced in [12], is the maximum value of ∑v∈V f(v) taken over all bad functions of G. In this paper, we present sharp upper bounds on the negative decision number of a graph in terms of its order, minimum degree, and maximum degree. We also establish a sharp Nordhaus-Gaddum-type inequality...

Domination parameters of a graph with deleted special subset of edges

Maria Kwaśnik, Maciej Zwierzchowski (2001)

Discussiones Mathematicae Graph Theory

Similarity:

This paper contains a number of estimations of the split domination number and the maximal domination number of a graph with a deleted subset of edges which induces a complete subgraph Kₚ. We discuss noncomplete graphs having or not having hanging vertices. In particular, for p = 2 the edge deleted graphs are considered. The motivation of these problems comes from [2] and [6], where the authors, among other things, gave the lower and upper bounds on irredundance, independence and domination...

List coloring of complete multipartite graphs

Tomáš Vetrík (2012)

Discussiones Mathematicae Graph Theory

Similarity:

The choice number of a graph G is the smallest integer k such that for every assignment of a list L(v) of k colors to each vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from L(v). We present upper and lower bounds on the choice number of complete multipartite graphs with partite classes of equal sizes and complete r-partite graphs with r-1 partite classes of order two.