Displaying similar documents to “Colouring vertices of plane graphs under restrictions given by faces”

On the strong parity chromatic number

Július Czap, Stanislav Jendroľ, František Kardoš (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A vertex colouring of a 2-connected plane graph G is a strong parity vertex colouring if for every face f and each colour c, the number of vertices incident with f coloured by c is either zero or odd. Czap et al. in [9] proved that every 2-connected plane graph has a proper strong parity vertex colouring with at most 118 colours. In this paper we improve this upper bound for some classes of plane graphs.

An Extension of Kotzig’s Theorem

Valerii A. Aksenov, Oleg V. Borodin, Anna O. Ivanova (2016)

Discussiones Mathematicae Graph Theory

Similarity:

In 1955, Kotzig proved that every 3-connected planar graph has an edge with the degree sum of its end vertices at most 13, which is tight. An edge uv is of type (i, j) if d(u) ≤ i and d(v) ≤ j. Borodin (1991) proved that every normal plane map contains an edge of one of the types (3, 10), (4, 7), or (5, 6), which is tight. Cole, Kowalik, and Škrekovski (2007) deduced from this result by Borodin that Kotzig’s bound of 13 is valid for all planar graphs with minimum degree δ at least 2...

Rainbow Connection In Sparse Graphs

Arnfried Kemnitz, Jakub Przybyło, Ingo Schiermeyer, Mariusz Woźniak (2013)

Discussiones Mathematicae Graph Theory

Similarity:

An edge-coloured connected graph G = (V,E) is called rainbow-connected if each pair of distinct vertices of G is connected by a path whose edges have distinct colours. The rainbow connection number of G, denoted by rc(G), is the minimum number of colours such that G is rainbow-connected. In this paper we prove that rc(G) ≤ k if |V (G)| = n and for all integers n and k with n − 6 ≤ k ≤ n − 3. We also show that this bound is tight.

The structure of plane graphs with independent crossings and its applications to coloring problems

Xin Zhang, Guizhen Liu (2013)

Open Mathematics

Similarity:

If a graph G has a drawing in the plane in such a way that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. In this paper, the structure of IC-planar graphs with minimum degree at least two or three is studied. By applying their structural results, we prove that the edge chromatic number of G is Δ if Δ ≥ 8, the list edge (resp. list total) chromatic number of G is Δ (resp. Δ + 1) if Δ ≥ 14 and the linear arboricity...

A Note On Vertex Colorings Of Plane Graphs

Igor Fabricia, Stanislav Jendrol’, Roman Soták (2014)

Discussiones Mathematicae Graph Theory

Similarity:

Given an integer valued weighting of all elements of a 2-connected plane graph G with vertex set V , let c(v) denote the sum of the weight of v ∈ V and of the weights of all edges and all faces incident with v. This vertex coloring of G is proper provided that c(u) ≠ c(v) for any two adjacent vertices u and v of G. We show that for every 2-connected plane graph there is such a proper vertex coloring with weights in {1, 2, 3}. In a special case, the value 3 is improved to 2.

A note on face coloring entire weightings of plane graphs

Stanislav Jendrol, Peter Šugerek (2014)

Discussiones Mathematicae Graph Theory

Similarity:

Given a weighting of all elements of a 2-connected plane graph G = (V,E, F), let f(α) denote the sum of the weights of the edges and vertices incident with the face _ and also the weight of _. Such an entire weighting is a proper face colouring provided that f(α) ≠ f(β) for every two faces α and _ sharing an edge. We show that for every 2-connected plane graph there is a proper face-colouring entire weighting with weights 1 through 4. For some families we improved 4 to 3

On doubly light vertices in plane graphs

Veronika Kozáková, Tomáš Madaras (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A vertex is said to be doubly light in a family of plane graphs if its degree and sizes of neighbouring faces are bounded above by a finite constant. We provide several results on the existence of doubly light vertices in various families of plane graph.