Displaying similar documents to “Oriented colouring of some graph products”

Associative graph products and their independence, domination and coloring numbers

Richard J. Nowakowski, Douglas F. Rall (1996)

Discussiones Mathematicae Graph Theory

Similarity:

Associative products are defined using a scheme of Imrich & Izbicki [18]. These include the Cartesian, categorical, strong and lexicographic products, as well as others. We examine which product ⊗ and parameter p pairs are multiplicative, that is, p(G⊗H) ≥ p(G)p(H) for all graphs G and H or p(G⊗H) ≤ p(G)p(H) for all graphs G and H. The parameters are related to independence, domination and irredundance. This includes Vizing's conjecture directly, and indirectly the Shannon capacity...

Interval edge colorings of some products of graphs

Petros A. Petrosyan (2011)

Discussiones Mathematicae Graph Theory

Similarity:

An edge coloring of a graph G with colors 1,2,...,t is called an interval t-coloring if for each i ∈ {1,2,...,t} there is at least one edge of G colored by i, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. A graph G is interval colorable, if there is an integer t ≥ 1 for which G has an interval t-coloring. Let ℜ be the set of all interval colorable graphs. In 2004 Kubale and Giaro showed that if G,H ∈ 𝔑, then the Cartesian product...

Relations between the domination parameters and the chromatic index of a graph

Włodzimierz Ulatowski (2009)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we show upper bounds for the sum and the product of the lower domination parameters and the chromatic index of a graph. We also present some families of graphs for which these upper bounds are achieved. Next, we give a lower bound for the sum of the upper domination parameters and the chromatic index. This lower bound is a function of the number of vertices of a graph and a new graph parameter which is defined here. In this case we also characterize graphs for which a respective...

Equitable Colorings Of Corona Multiproducts Of Graphs

Hanna Furmánczyk, Marek Kubale, Vahan V. Mkrtchyan (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the numbers of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted by 𝜒=(G). It is known that the problem of computation of 𝜒=(G) is NP-hard in general and remains so for corona graphs. In this paper we consider the same model of coloring in the case of corona multiproducts...

List coloring of complete multipartite graphs

Tomáš Vetrík (2012)

Discussiones Mathematicae Graph Theory

Similarity:

The choice number of a graph G is the smallest integer k such that for every assignment of a list L(v) of k colors to each vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from L(v). We present upper and lower bounds on the choice number of complete multipartite graphs with partite classes of equal sizes and complete r-partite graphs with r-1 partite classes of order two.

A cancellation property for the direct product of graphs

Richard H. Hammack (2008)

Discussiones Mathematicae Graph Theory

Similarity:

Given graphs A, B and C for which A×C ≅ B×C, it is not generally true that A ≅ B. However, it is known that A×C ≅ B×C implies A ≅ B provided that C is non-bipartite, or that there are homomorphisms from A and B to C. This note proves an additional cancellation property. We show that if B and C are bipartite, then A×C ≅ B×C implies A ≅ B if and only if no component of B admits an involution that interchanges its partite sets.

2-Tone Colorings in Graph Products

Jennifer Loe, Danielle Middelbrooks, Ashley Morris, Kirsti Wash (2015)

Discussiones Mathematicae Graph Theory

Similarity:

A variation of graph coloring known as a t-tone k-coloring assigns a set of t colors to each vertex of a graph from the set {1, . . . , k}, where the sets of colors assigned to any two vertices distance d apart share fewer than d colors in common. The minimum integer k such that a graph G has a t- tone k-coloring is known as the t-tone chromatic number. We study the 2-tone chromatic number in three different graph products. In particular, given graphs G and H, we bound the 2-tone chromatic...

Equitable coloring of Kneser graphs

Robert Fidytek, Hanna Furmańczyk, Paweł Żyliński (2009)

Discussiones Mathematicae Graph Theory

Similarity:

The Kneser graph K(n,k) is the graph whose vertices correspond to k-element subsets of set {1,2,...,n} and two vertices are adjacent if and only if they represent disjoint subsets. In this paper we study the problem of equitable coloring of Kneser graphs, namely, we establish the equitable chromatic number for graphs K(n,2) and K(n,3). In addition, for sufficiently large n, a tight upper bound on equitable chromatic number of graph K(n,k) is given. Finally, the cases of K(2k,k) and K(2k+1,k)...

On dominating the Cartesian product of a graph and K₂

Bert L. Hartnell, Douglas F. Rall (2004)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we consider the Cartesian product of an arbitrary graph and a complete graph of order two. Although an upper and lower bound for the domination number of this product follow easily from known results, we are interested in the graphs that actually attain these bounds. In each case, we provide an infinite class of graphs to show that the bound is sharp. The graphs that achieve the lower bound are of particular interest given the special nature of their dominating sets and...

On acyclic colorings of direct products

Simon Špacapan, Aleksandra Tepeh Horvat (2008)

Discussiones Mathematicae Graph Theory

Similarity:

A coloring of a graph G is an acyclic coloring if the union of any two color classes induces a forest. It is proved that the acyclic chromatic number of direct product of two trees T₁ and T₂ equals min{Δ(T₁) + 1, Δ(T₂) + 1}. We also prove that the acyclic chromatic number of direct product of two complete graphs Kₘ and Kₙ is mn-m-2, where m ≥ n ≥ 4. Several bounds for the acyclic chromatic number of direct products are given and in connection to this some questions are raised. ...

The leafage of a chordal graph

In-Jen Lin, Terry A. McKee, Douglas B. West (1998)

Discussiones Mathematicae Graph Theory

Similarity:

The leafage l(G) of a chordal graph G is the minimum number of leaves of a tree in which G has an intersection representation by subtrees. We obtain upper and lower bounds on l(G) and compute it on special classes. The maximum of l(G) on n-vertex graphs is n - lg n - 1/2 lg lg n + O(1). The proper leafage l*(G) is the minimum number of leaves when no subtree may contain another; we obtain upper and lower bounds on l*(G). Leafage equals proper leafage on claw-free chordal graphs. We use...

The crossing numbers of certain Cartesian products

Marián Klešč (1995)

Discussiones Mathematicae Graph Theory

Similarity:

In this article we determine the crossing numbers of the Cartesian products of given three graphs on five vertices with paths.