An estimate of the Fourier coefficients of functions belonging to the Besov class.
Beriša, Muharem C. (1985)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Beriša, Muharem C. (1985)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
M. Bożejko, T. Pytlik (1972)
Colloquium Mathematicae
Similarity:
Zhang, Qing-Hua, Chen, Shuiming, Qu, Yuanyuan (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
M. Mathias (1923)
Mathematische Zeitschrift
Similarity:
John J. F. Fournier (1985)
Colloquium Mathematicae
Similarity:
Richard M. Aron, David Pérez-García, Juan B. Seoane-Sepúlveda (2006)
Studia Mathematica
Similarity:
We show that, given a set E ⊂ 𝕋 of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point t ∈ E is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra of 𝓒(𝕋) every non-zero element of which has a Fourier series expansion divergent in E.
Sousa Pinto, J. (1991)
Portugaliae mathematica
Similarity:
(1970)
Czechoslovak Mathematical Journal
Similarity:
Faragallah, M., Elshobaky, E. (2002)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Nicolas Artémiadis (1967)
Compositio Mathematica
Similarity: