Displaying similar documents to “On Minimal Geodetic Domination in Graphs”

Geodetic sets in graphs

Gary Chartrand, Frank Harary, Ping Zhang (2000)

Discussiones Mathematicae Graph Theory

Similarity:

For two vertices u and v of a graph G, the closed interval I[u,v] consists of u, v, and all vertices lying in some u-v geodesic in G. If S is a set of vertices of G, then I[S] is the union of all sets I[u,v] for u, v ∈ S. If I[S] = V(G), then S is a geodetic set for G. The geodetic number g(G) is the minimum cardinality of a geodetic set. A set S of vertices in a graph G is uniform if the distance between every two distinct vertices of S is the same fixed number. A geodetic set is essential...

Minimal acyclic dominating sets and cut-vertices

Vladimir D. Samodivkin (2005)

Mathematica Bohemica

Similarity:

The paper studies minimal acyclic dominating sets, acyclic domination number and upper acyclic domination number in graphs having cut-vertices.

Graphs with equal domination and 2-distance domination numbers

Joanna Raczek (2011)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph. The distance between two vertices u and v in a connected graph G is the length of the shortest (u-v) path in G. A set D ⊆ V(G) is a dominating set if every vertex of G is at distance at most 1 from an element of D. The domination number of G is the minimum cardinality of a dominating set of G. A set D ⊆ V(G) is a 2-distance dominating set if every vertex of G is at distance at most 2 from an element of D. The 2-distance domination number of G is the minimum...

Two Short Proofs on Total Domination

Allan Bickle (2013)

Discussiones Mathematicae Graph Theory

Similarity:

A set of vertices of a graph G is a total dominating set if each vertex of G is adjacent to a vertex in the set. The total domination number of a graph Υt (G) is the minimum size of a total dominating set. We provide a short proof of the result that Υt (G) ≤ 2/3n for connected graphs with n ≥ 3 and a short characterization of the extremal graphs.

Domination Parameters of a Graph and its Complement

Wyatt J. Desormeaux, Teresa W. Haynes, Michael A. Henning (2018)

Discussiones Mathematicae Graph Theory

Similarity:

A dominating set in a graph G is a set S of vertices such that every vertex in V (G) S is adjacent to at least one vertex in S, and the domination number of G is the minimum cardinality of a dominating set of G. Placing constraints on a dominating set yields different domination parameters, including total, connected, restrained, and clique domination numbers. In this paper, we study relationships among domination parameters of a graph and its complement.

The vertex monophonic number of a graph

A.P. Santhakumaran, P. Titus (2012)

Discussiones Mathematicae Graph Theory

Similarity:

For a connected graph G of order p ≥ 2 and a vertex x of G, a set S ⊆ V(G) is an x-monophonic set of G if each vertex v ∈ V(G) lies on an x -y monophonic path for some element y in S. The minimum cardinality of an x-monophonic set of G is defined as the x-monophonic number of G, denoted by mₓ(G). An x-monophonic set of cardinality mₓ(G) is called a mₓ-set of G. We determine bounds for it and characterize graphs which realize these bounds. A connected graph of order p with vertex monophonic...

Some results concerning the ends of minimal cuts of simple graphs

Xiaofeng Jia (2000)

Discussiones Mathematicae Graph Theory

Similarity:

Let S be a cut of a simple connected graph G. If S has no proper subset that is a cut, we say S is a minimal cut of G. To a minimal cut S, a connected component of G-S is called a fragment. And a fragment with no proper subset that is a fragment is called an end. In the paper ends are characterized and it is proved that to a connected graph G = (V,E), the number of its ends Σ ≤ |V(G)|.