Displaying similar documents to “On a Spanning k-Tree in which Specified Vertices Have Degree Less Than k”

Spanning Trees whose Stems have a Bounded Number of Branch Vertices

Zheng Yan (2016)

Discussiones Mathematicae Graph Theory

Similarity:

Let T be a tree, a vertex of degree one and a vertex of degree at least three is called a leaf and a branch vertex, respectively. The set of leaves of T is denoted by Leaf(T). The subtree T − Leaf(T) of T is called the stem of T and denoted by Stem(T). In this paper, we give two sufficient conditions for a connected graph to have a spanning tree whose stem has a bounded number of branch vertices, and these conditions are best possible.

Extended trees of graphs

Bohdan Zelinka (1994)

Mathematica Bohemica

Similarity:

An extended tree of a graph is a certain analogue of spanning tree. It is defined by means of vertex splitting. The properties of these trees are studied, mainly for complete graphs.

Minimum vertex ranking spanning tree problem for chordal and proper interval graphs

Dariusz Dereniowski (2009)

Discussiones Mathematicae Graph Theory

Similarity:

A vertex k-ranking of a simple graph is a coloring of its vertices with k colors in such a way that each path connecting two vertices of the same color contains a vertex with a bigger color. Consider the minimum vertex ranking spanning tree (MVRST) problem where the goal is to find a spanning tree of a given graph G which has a vertex ranking using the minimal number of colors over vertex rankings of all spanning trees of G. K. Miyata et al. proved in [NP-hardness proof and an approximation...

Characterization Results for theL(2, 1, 1)-Labeling Problem on Trees

Xiaoling Zhang, Kecai Deng (2017)

Discussiones Mathematicae Graph Theory

Similarity:

An L(2, 1, 1)-labeling of a graph G is an assignment of non-negative integers (labels) to the vertices of G such that adjacent vertices receive labels with difference at least 2, and vertices at distance 2 or 3 receive distinct labels. The span of such a labelling is the difference between the maximum and minimum labels used, and the minimum span over all L(2, 1, 1)-labelings of G is called the L(2, 1, 1)-labeling number of G, denoted by λ2,1,1(G). It was shown by King, Ras and Zhou...

A lower bound for the irredundance number of trees

Michael Poschen, Lutz Volkmann (2006)

Discussiones Mathematicae Graph Theory

Similarity:

Let ir(G) and γ(G) be the irredundance number and domination number of a graph G, respectively. The number of vertices and leaves of a graph G are denoted by n(G) and n₁(G). If T is a tree, then Lemańska [4] presented in 2004 the sharp lower bound γ(T) ≥ (n(T) + 2 - n₁(T))/3. In this paper we prove ir(T) ≥ (n(T) + 2 - n₁(T))/3. for an arbitrary tree T. Since γ(T) ≥ ir(T) is always valid, this inequality is an extension and improvement of...