The search session has expired. Please query the service again.

Displaying similar documents to “Numerical modelling of river flow (numerical schemes for one type of nonconservative systems”

High order finite volume schemes for numerical solution of 2D and 3D transonic flows

Jiří Fürst, Karel Kozel, Petr Furmánek (2009)

Kybernetika

Similarity:

The aim of this article is a qualitative analysis of two modern finite volume (FVM) schemes. First one is the so called Modified Causon’s scheme, which is based on the classical MacCormack FVM scheme in total variation diminishing (TVD) form, but is simplified in such a way that the demands on computational power are much smaller without loss of accuracy. Second one is implicit WLSQR (Weighted Least Square Reconstruction) scheme combined with various types of numerical fluxes (AUSMPW+...

Compressible two-phase flows by central and upwind schemes

Smadar Karni, Eduard Kirr, Alexander Kurganov, Guergana Petrova (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This paper concerns numerical methods for two-phase flows. The governing equations are the compressible 2-velocity, 2-pressure flow model. Pressure and velocity relaxation are included as source terms. Results obtained by a Godunov-type central scheme and a Roe-type upwind scheme are presented. Issues of preservation of pressure equilibrium, and positivity of the partial densities are addressed.

Numerical solution of inviscid incompressible flow in a channel with dynamical effects

Honzátko, Radek, Horáček, Jaromír, Kozel, Karel

Similarity:

Numerical solution of unsteady 2D inviscid incompressible flows described by Euler equations over the vibrating profile NACA 0012 in a channel is studied. The finite volume method (FVM) and a higher order cell-centered scheme with an artificial dissipation at a qudrilateral C-mesh is used. The method of artificial compressibility and the time dependent method are used for steady state solutions. Numerical results are compared with experimental data.