Displaying similar documents to “A new approach for solving nonlinear BVP's on the half-line for second order equations and applications”

On exact solutions of a class of interval boundary value problems

Nizami A. Gasilov (2022)

Kybernetika

Similarity:

In this article, we deal with the Boundary Value Problem (BVP) for linear ordinary differential equations, the coefficients and the boundary values of which are constant intervals. To solve this kind of interval BVP, we implement an approach that differs from commonly used ones. With this approach, the interval BVP is interpreted as a family of classical (real) BVPs. The set (bunch) of solutions of all these real BVPs we define to be the solution of the interval BVP. Therefore, the novelty...

On some three-point problems for third-order differential equations

Irena Rachůnková (1992)

Mathematica Bohemica

Similarity:

This paper is concerned with existence and uniqueness of solutions of the three-point problem u ' ' ' = f ( t , u , u ' , u ' ' ) , u ( c ) = 0 , u ' ( a ) = u ' ( b ) . u ' ' ( a ) = u ' ' ( b ) , a c b . The problem is at resonance, in the sense that the associated linear problem has non-trivial solutions. We use the method of lower and upper solutions.

Positive solutions with given slope of a nonlocal second order boundary value problem with sign changing nonlinearities

P. Ch. Tsamatos (2004)

Annales Polonici Mathematici

Similarity:

We study a nonlocal boundary value problem for the equation x''(t) + f(t,x(t),x'(t)) = 0, t ∈ [0,1]. By applying fixed point theorems on appropriate cones, we prove that this boundary value problem admits positive solutions with slope in a given annulus. It is remarkable that we do not assume f≥0. Here the sign of the function f may change.