Convergence of convolution operators
Charles Swartz (1972)
Studia Mathematica
Similarity:
Charles Swartz (1972)
Studia Mathematica
Similarity:
S. R. Yadava (1972)
Matematički Vesnik
Similarity:
Charles W. Swartz (1975)
Czechoslovak Mathematical Journal
Similarity:
Brian Fisher, Emin Özcag (1991)
Publications de l'Institut Mathématique
Similarity:
Kazimierz Urbanik (1987)
Colloquium Mathematicum
Similarity:
Gunnar Forst (1978)
Annales de l'institut Fourier
Similarity:
The note gives a simple proof of a result of M. Itô, stating that the set of divisors of a convolution kernel is a convex cone.
Nedeljkov, M., Pilipović, S. (1992)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Anna Kula (2011)
Banach Center Publications
Similarity:
The q-convolution is a measure-preserving transformation which originates from non-commutative probability, but can also be treated as a one-parameter deformation of the classical convolution. We show that its commutative aspect is further certified by the fact that the q-convolution satisfies all of the conditions of the generalized convolution (in the sense of Urbanik). The last condition of Urbanik's definition, the law of large numbers, is the crucial part to be proved and the non-commutative...
J. Kucharczak (1988)
Colloquium Mathematicae
Similarity:
Stojanović, Mirjana (1996)
Novi Sad Journal of Mathematics
Similarity:
Louis Pigno (1976)
Studia Mathematica
Similarity: