Displaying similar documents to “Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach”

Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach

Filippo Cagnetti, Rodica Toader (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

A new approach to irreversible quasistatic fracture growth is given, by means of Young measures. The study concerns a cohesive zone model with prescribed crack path, when the material gives different responses to loading and unloading phases. In the particular situation of constant unloading response, the result contained in [G. Dal Maso and C. Zanini, (2007) 253–279] is recovered. In this case, the convergence of the discrete time approximations is improved. ...

Homogenization of periodic nonconvex integral functionals in terms of Young measures

Omar Anza Hafsa, Jean-Philippe Mandallena, Gérard Michaille (2005)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Homogenization of periodic functionals, whose integrands possess possibly multi-well structure, is treated in terms of Young measures. More precisely, we characterize the -limit of sequences of such functionals in the set of Young measures, extending the relaxation theorem of Kinderlherer and Pedregal. We also make precise the relationship between our homogenized density and the classical one.

A Young measures approach to quasistatic evolution for a class of material models with nonconvex elastic energies

Alice Fiaschi (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Rate-independent evolution for material models with nonconvex elastic energies is studied without any spatial regularization of the inner variable; due to lack of convexity, the model is developed in the framework of Young measures. An existence result for the quasistatic evolution is obtained in terms of compatible systems of Young measures. We also show as this result can be equivalently reformulated with probabilistic language and leads to the description of the quasistatic evolution...

Spatial heterogeneity in 3D-2D dimensional reduction

Jean-François Babadjian, Gilles A. Francfort (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

A justification of heterogeneous membrane models as zero-thickness limits of a cylindral three-dimensional heterogeneous nonlinear hyperelastic body is proposed in the spirit of Le Dret (1995). Specific characterizations of the 2D elastic energy are produced. As a generalization of Bouchitté (2002), the case where external loads induce a density of bending moment that produces a Cosserat vector field is also investigated. Throughout, the 3D-2D dimensional reduction is viewed as a problem...

A Variational Problem Modelling Behavior of Unorthodox Silicon Crystals

J. Hannon, M. Marcus, Victor J. Mizel (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Controlling growth at crystalline surfaces requires a detailed and quantitative understanding of the thermodynamic and kinetic parameters governing mass transport. Many of these parameters can be determined by analyzing the isothermal wandering of steps at a vicinal [“step-terrace”] type surface [for a recent review see [4]]. In the case of crystals one finds that these meanderings develop larger amplitudes as the equilibrium temperature is raised (as is consistent with the statistical...