Displaying similar documents to “Finite element approximation of kinetic dilute polymer models with microscopic cut-off”

Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers

John W. Barrett, Endre Süli (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain  ⊂ ℝ,  = 2 or 3, for ...

Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers

John W. Barrett, Endre Süli (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain  ⊂ ℝ,  = 2 or 3, for ...

Space-time variational saddle point formulations of Stokes and Navier–Stokes equations

Rafaela Guberovic, Christoph Schwab, Rob Stevenson (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The instationary Stokes and Navier−Stokes equations are considered in a simultaneously space-time variational saddle point formulation, so involving both velocities u and pressure . For the instationary Stokes problem, it is shown that the corresponding operator is a linear mapping between and H', both Hilbert spaces and being Cartesian products of (intersections of) Bochner spaces, or duals of those. Based on these results, the operator...

Finite element approximation of kinetic dilute polymer models with microscopic cut-off

John W. Barrett, Endre Süli (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ d , = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum...

Stabilization of a non standard FETI-DP mortar method for the Stokes problem

E. Chacón Vera, T. Chacón Rebollo (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In a recent paper [E. Chacón Vera and D. Franco Coronil, 20 (2012) 161–182.] a non standard mortar method for incompressible Stokes problem was introduced where the use of the trace spaces and H and a direct computation of the pairing of the trace spaces with their duals are the main ingredients. The importance of the reduction of the number of degrees of freedom leads naturally to consider the stabilized version and this is the results we present in this...