Displaying similar documents to “Error estimates for Stokes problem with Tresca friction conditions”

Coupling Darcy and Stokes equations for porous media with cracks

Christine Bernardi, Frédéric Hecht, Olivier Pironneau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In order to handle the flow of a viscous incompressible fluid in a porous medium with cracks, the thickness of which cannot be neglected, we consider a model which couples the Darcy equations in the medium with the Stokes equations in the cracks by a new boundary condition at the interface, namely the continuity of the pressure. We prove that this model admits a unique solution and propose a mixed formulation of it. Relying on this formulation, we describe a finite element discretization...

Formulations Mixtes Augmentées et Applications

Boujemâa Achchab, Abdellatif AGOUZAL (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We propose and analyse a abstract framework for augmented mixed formulations. We give error estimate in the general case: conforming and nonconforming approximations with or without numerical integration. Finally, error estimator is given. An example of stabilized formulation for Stokes problem is analysed.

A mixed formulation of a sharp interface model of stokes flow with moving contact lines

Shawn W. Walker (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Two-phase fluid flows on substrates (.. wetting phenomena) are important in many industrial processes, such as micro-fluidics and coating flows. These flows include additional physical effects that occur near moving (three-phase) contact lines. We present a new 2-D variational (saddle-point) formulation of a Stokesian fluid with surface tension that interacts with a rigid substrate. The model is derived by an Onsager type principle using shape differential calculus (at the sharp-interface,...

Analysis and finite element error estimates for the velocity tracking problem for Stokes flows a penalized formulation

Konstantinos Chrysafinos (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

A distributed optimal control problem for evolutionary Stokes flows is studied a pseudocompressibility formulation. Several results concerning the analysis of the velocity tracking problem are presented. Semidiscrete finite element error estimates for the corresponding optimality system are derived based on estimates for the penalized Stokes problem and the BRR (Brezzi-Rappaz-Raviart) theory. Finally, the convergence of the solutions of the penalized optimality systems as ε → 0...