Displaying similar documents to “A mixed formulation of a sharp interface model of stokes flow with moving contact lines”

Stable discretization of a diffuse interface model for liquid-vapor flows with surface tension

Malte Braack, Andreas Prohl (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The isothermal Navier–Stokes–Korteweg system is used to model dynamics of a compressible fluid exhibiting phase transitions between a liquid and a vapor phase in the presence of capillarity effects close to phase boundaries. Standard numerical discretizations are known to violate discrete versions of inherent energy inequalities, thus leading to spurious dynamics of computed solutions close to static equilibria (, parasitic currents). In this work, we propose a time-implicit discretization...

Error estimates for Stokes problem with Tresca friction conditions

Mekki Ayadi, Leonardo Baffico, Mohamed Khaled Gdoura, Taoufik Sassi (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper, we present and study a mixed variational method in order to approximate, with the finite element method, a Stokes problem with Tresca friction boundary conditions. These non-linear boundary conditions arise in the modeling of mold filling process by polymer melt, which can slip on a solid wall. The mixed formulation is based on a dualization of the non-differentiable term which define the slip conditions. Existence and uniqueness of both continuous and discrete solutions...

Coupling Darcy and Stokes equations for porous media with cracks

Christine Bernardi, Frédéric Hecht, Olivier Pironneau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In order to handle the flow of a viscous incompressible fluid in a porous medium with cracks, the thickness of which cannot be neglected, we consider a model which couples the Darcy equations in the medium with the Stokes equations in the cracks by a new boundary condition at the interface, namely the continuity of the pressure. We prove that this model admits a unique solution and propose a mixed formulation of it. Relying on this formulation, we describe a finite element discretization...

Two shallow-water type models for viscoelastic flows from kinetic theory for polymers solutions

Gladys Narbona-Reina, Didier Bresch (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this work, depending on the relation between the Deborah, the Reynolds and the aspect ratio numbers, we formally derived shallow-water type systems starting from a micro-macro description for non-Newtonian fluids in a thin domain governed by an elastic dumbbell type model with a slip boundary condition at the bottom. The result has been announced by the authors in [G. Narbona-Reina, D. Bresch, Springer Verlag (2010)] and in the present paper, we provide a self-contained description,...

A priori error analysis of a fully-mixed finite element method for a two-dimensional fluid-solid interaction problem

Carolina Domínguez, Gabriel N. Gatica, Salim Meddahi, Ricardo Oyarzúa (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We introduce and analyze a fully-mixed finite element method for a fluid-solid interaction problem in 2D. The model consists of an elastic body which is subject to a given incident wave that travels in the fluid surrounding it. Actually, the fluid is supposed to occupy an annular region, and hence a Robin boundary condition imitating the behavior of the scattered field at infinity is imposed on its exterior boundary, which is located far from the obstacle. The media are governed by the...

An anti-diffusive Lagrange-Remap scheme for multi-material compressible flows with an arbitrary number of components

Marie Billaud Friess, Samuel Kokh (2012)

ESAIM: Proceedings

Similarity:

We propose a method dedicated to the simulation of interface flows involving an arbitrary number of compressible components. Our task is two-fold: we first introduce a -component flow model that generalizes the two-material five-equation model of [2,3]. Then, we present a discretization strategy by means of a Lagrange-Remap [8,10] approach following the lines of [5,7,12]. The projection step involves an anti-dissipative mechanism derived from [11,12]. This feature allows to prevent...

A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model

F. M. Guillén-González, J. V. Gutiérrez-Santacreu (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this work we study a fully discrete mixed scheme, based on continuous finite elements in space and a linear semi-implicit first-order integration in time, approximating an nematic liquid crystal model by means of a penalized problem. Conditional stability of this scheme is proved a discrete version of the energy law satisfied by the continuous problem, and conditional convergence towards generalized Young measure-valued solutions to the problem is showed when the discrete parameters...

Modelling and Numerical Simulation of the Dynamics of Glaciers Including Local Damage Effects

G. Jouvet, M. Picasso, J. Rappaz, M. Huss, M. Funk (2011)

Mathematical Modelling of Natural Phenomena

Similarity:

A numerical model to compute the dynamics of glaciers is presented. Ice damage due to cracks or crevasses can be taken into account whenever needed. This model allows simulations of the past and future retreat of glaciers, the calving process or the break-off of hanging glaciers. All these phenomena are strongly affected by climate change. Ice is assumed to behave as an incompressible fluid with nonlinear viscosity, so that the ...