CS-barrelled spaces.
J. Kakol, W. Sliwa, M. Wójtowicz (1994)
Collectanea Mathematica
Similarity:
J. Kakol, W. Sliwa, M. Wójtowicz (1994)
Collectanea Mathematica
Similarity:
Manuel Valdivia (1972)
Annales de l'institut Fourier
Similarity:
If is the topological product of a non-countable family of barrelled spaces of non-nulle dimension, there exists an infinite number of non-bornological barrelled subspaces of . The same result is obtained replacing “barrelled” by “quasi-barrelled”.
Stojan Radenović (1986)
Publications de l'Institut Mathématique
Similarity:
M. de Wilde, B. Tsirulnikov (1980/81)
Manuscripta mathematica
Similarity:
Radenović, Stojan (1986)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Manuel Valdivia (1972)
Annales de l'institut Fourier
Similarity:
The three following examples are given: a bornological space containing a subspace of infinite countable codimension which is not quasi-barrelled, a quasi-barrelled -space containing a subspace of infinite countable codimension which is not -space, and bornological barrelled space which is not inductive limit of Baire space.
Luis Manuel Sánchez Ruiz (1992)
Extracta Mathematicae
Similarity:
Baltasar Rodríguez Salinas (1995)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Similarity:
W. Roelke (1971)
Collectanea Mathematica
Similarity: