CS-barrelled spaces.
J. Kakol, W. Sliwa, M. Wójtowicz (1994)
Collectanea Mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
J. Kakol, W. Sliwa, M. Wójtowicz (1994)
Collectanea Mathematica
Similarity:
Manuel Valdivia (1972)
Annales de l'institut Fourier
Similarity:
If is the topological product of a non-countable family of barrelled spaces of non-nulle dimension, there exists an infinite number of non-bornological barrelled subspaces of . The same result is obtained replacing “barrelled” by “quasi-barrelled”.
Stojan Radenović (1986)
Publications de l'Institut Mathématique
Similarity:
M. de Wilde, B. Tsirulnikov (1980/81)
Manuscripta mathematica
Similarity:
Radenović, Stojan (1986)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Manuel Valdivia (1972)
Annales de l'institut Fourier
Similarity:
The three following examples are given: a bornological space containing a subspace of infinite countable codimension which is not quasi-barrelled, a quasi-barrelled -space containing a subspace of infinite countable codimension which is not -space, and bornological barrelled space which is not inductive limit of Baire space.
Luis Manuel Sánchez Ruiz (1992)
Extracta Mathematicae
Similarity:
Baltasar Rodríguez Salinas (1995)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Similarity:
W. Roelke (1971)
Collectanea Mathematica
Similarity: