Displaying similar documents to “Asymptotics of counts of small components in random structures and models of coagulation-fragmentation”

Strong Unique Ergodicity of Random Dynamical Systems on Polish Spaces

Paweł Płonka (2016)

Annales Mathematicae Silesianae

Similarity:

In this paper we want to show the existence of a form of asymptotic stability of random dynamical systems in the sense of L. Arnold using arguments analogous to those presented by T. Szarek in [6], that is showing it using conditions generalizing the notion of tightness of measures. In order to do that we use tightness theory for random measures as developed by H. Crauel in [2].

Optimal transportation for multifractal random measures and applications

Rémi Rhodes, Vincent Vargas (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In this paper, we study optimal transportation problems for multifractal random measures. Since these measures are much less regular than optimal transportation theory requires, we introduce a new notion of transportation which is intuitively some kind of multistep transportation. Applications are given for construction of multifractal random changes of times and to the existence of random metrics, the volume forms of which coincide with the multifractal random measures.

Cluster continuous time random walks

Agnieszka Jurlewicz, Mark M. Meerschaert, Hans-Peter Scheffler (2011)

Studia Mathematica

Similarity:

In a continuous time random walk (CTRW), a random waiting time precedes each random jump. The CTRW model is useful in physics, to model diffusing particles. Its scaling limit is a time-changed process, whose densities solve an anomalous diffusion equation. This paper develops limit theory and governing equations for cluster CTRW, in which a random number of jumps cluster together into a single jump. The clustering introduces a dependence between the waiting times and jumps that significantly...