Displaying similar documents to “Transience of Random Walks on Nilpotent Groups”

Most random walks on nilpotent groups are mixing

R. Rębowski (1992)

Annales Polonici Mathematici

Similarity:

Let G be a second countable locally compact nilpotent group. It is shown that for every norm completely mixing (n.c.m.) random walk μ, αμ + (1-α)ν is n.c.m. for 0 < α ≤ 1, ν ∈ P(G). In particular, a generic stochastic convolution operator on G is n.c.m.

Nil series from arbitrary functions in group theory

Ian Hawthorn (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In an earlier paper distributors were defined as a measure of how close an arbitrary function between groups is to being a homomorphism. Distributors generalize commutators, hence we can use them to try to generalize anything defined in terms of commutators. In this paper we use this to define a generalization of nilpotent groups and explore its basic properties.

Some remarks on almost finitely generated nilpotent groups.

Peter Hilton, Robert Militello (1992)

Publicacions Matemàtiques

Similarity:

We identify two generalizations of the notion of a finitely generated nilpotent. Thus a nilpotent group G is fgp if Gp is fg as p-local group for each p; and G is fg-like if there exists a fg nilpotent group H such that Gp ≅ Hp for all p. The we have proper set-inclusions: {fg} ⊂ {fg-like} ⊂ {fgp}. We examine the extent to which fg-like nilpotent groups satisfy the axioms for...