On C-spaces
P. Srivastava, K. K. Azad (1981)
Matematički Vesnik
Similarity:
P. Srivastava, K. K. Azad (1981)
Matematički Vesnik
Similarity:
Ralph McKenzie (1971)
Colloquium Mathematicae
Similarity:
Janusz Matkowski (1989)
Annales Polonici Mathematici
Similarity:
Stephan Baier (2004)
Acta Arithmetica
Similarity:
A. Szymański (1977)
Colloquium Mathematicae
Similarity:
А.М. Вершик (1972)
Zapiski naucnych seminarov Leningradskogo
Similarity:
M. K. Sen (1971)
Annales Polonici Mathematici
Similarity:
A. Makowski (1964)
Matematički Vesnik
Similarity:
A. Pełczyński, H. Rosenthal (1975)
Studia Mathematica
Similarity:
Jorge Bustamante (2022)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We present a new Marchaud type inequality in spaces.
Stephan Baier (2005)
Acta Arithmetica
Similarity:
K. Orlov (1981)
Matematički Vesnik
Similarity:
Swami Jnanananda (1936)
Časopis pro pěstování matematiky a fysiky
Similarity:
M. K. Aouf (1988)
Matematički Vesnik
Similarity:
M. Đurić (1973)
Matematički Vesnik
Similarity:
Markus Passenbrunner (2011)
Studia Mathematica
Similarity:
We identify the torus with the unit interval [0,1) and let n,ν ∈ ℕ with 0 ≤ ν ≤ n-1 and N:= n+ν. Then we define the (partially equally spaced) knots = ⎧ j/(2n) for j = 0,…,2ν, ⎨ ⎩ (j-ν)/n for for j = 2ν+1,…,N-1. Furthermore, given n,ν we let be the space of piecewise linear continuous functions on the torus with knots . Finally, let be the orthogonal projection operator from L²([0,1)) onto . The main result is . This shows in particular that the Lebesgue constant of the classical...
Gryzlov, A.
Similarity:
Th. Friedrich (1974)
Colloquium Mathematicae
Similarity:
Z. Ciesielski, A. Kamont (2004)
Studia Mathematica
Similarity:
To each set of knots for i = 0,...,2ν and for i = 2ν + 1,..., n + ν, with 1 ≤ ν ≤ n, there corresponds the space of all piecewise linear and continuous functions on I = [0,1] with knots and the orthogonal projection of L²(I) onto . The main result is . This shows that the Lebesgue constant for the Franklin orthogonal system is 2 + (2-√3)².