On C-spaces
P. Srivastava, K. K. Azad (1981)
Matematički Vesnik
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
P. Srivastava, K. K. Azad (1981)
Matematički Vesnik
Similarity:
Ralph McKenzie (1971)
Colloquium Mathematicae
Similarity:
Janusz Matkowski (1989)
Annales Polonici Mathematici
Similarity:
Stephan Baier (2004)
Acta Arithmetica
Similarity:
A. Szymański (1977)
Colloquium Mathematicae
Similarity:
А.М. Вершик (1972)
Zapiski naucnych seminarov Leningradskogo
Similarity:
M. K. Sen (1971)
Annales Polonici Mathematici
Similarity:
A. Makowski (1964)
Matematički Vesnik
Similarity:
A. Pełczyński, H. Rosenthal (1975)
Studia Mathematica
Similarity:
Jorge Bustamante (2022)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We present a new Marchaud type inequality in spaces.
Stephan Baier (2005)
Acta Arithmetica
Similarity:
K. Orlov (1981)
Matematički Vesnik
Similarity:
Swami Jnanananda (1936)
Časopis pro pěstování matematiky a fysiky
Similarity:
M. K. Aouf (1988)
Matematički Vesnik
Similarity:
M. Đurić (1973)
Matematički Vesnik
Similarity:
Markus Passenbrunner (2011)
Studia Mathematica
Similarity:
We identify the torus with the unit interval [0,1) and let n,ν ∈ ℕ with 0 ≤ ν ≤ n-1 and N:= n+ν. Then we define the (partially equally spaced) knots = ⎧ j/(2n) for j = 0,…,2ν, ⎨ ⎩ (j-ν)/n for for j = 2ν+1,…,N-1. Furthermore, given n,ν we let be the space of piecewise linear continuous functions on the torus with knots . Finally, let be the orthogonal projection operator from L²([0,1)) onto . The main result is . This shows in particular that the Lebesgue constant of the classical...
Gryzlov, A.
Similarity:
Th. Friedrich (1974)
Colloquium Mathematicae
Similarity: