On the diophantine equation f (x, y) = 0.
H. Kleiman (1976)
Journal für die reine und angewandte Mathematik
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
H. Kleiman (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Yang Hai, P. G. Walsh (2010)
Acta Arithmetica
Similarity:
Ernst, Bruno (1996)
General Mathematics
Similarity:
Alan Filipin (2009)
Acta Arithmetica
Similarity:
Shin-ichi Katayama, Claude Levesque (2003)
Acta Arithmetica
Similarity:
Jianhua Chen (2001)
Acta Arithmetica
Similarity:
Pingzhi Yuan, Jiagui Luo (2010)
Acta Arithmetica
Similarity:
Pingzhi Yuan (2004)
Acta Arithmetica
Similarity:
S. Akhtari, A. Togbé, P. G. Walsh (2009)
Acta Arithmetica
Similarity:
Katalin Gyarmati (2001)
Acta Arithmetica
Similarity:
Xiaolei Dong, W. C. Shiu, C. I. Chu, Zhenfu Cao (2007)
Acta Arithmetica
Similarity:
Umberto Zannier (2003)
Acta Arithmetica
Similarity:
Susil Kumar Jena (2014)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
The Diophantine equation A² + nB⁴ = C³ has infinitely many integral solutions A, B, C for any fixed integer n. The case n = 0 is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.
Yu. F. Bilu, M. Kulkarni, B. Sury (2004)
Acta Arithmetica
Similarity:
Muriefah, Fadwa S.Abu, Bugeaud, Yann (2006)
Revista Colombiana de Matemáticas
Similarity:
E. Herrmann, I. Járási, A. Pethő (2004)
Acta Arithmetica
Similarity:
Ajai Choudhry, Jarosław Wróblewski (2007)
Acta Arithmetica
Similarity:
Makoto Nagata (2003)
Acta Arithmetica
Similarity:
P. Erdös, P. Szüsz, P. Turán (1958)
Colloquium Mathematicae
Similarity:
J. H. E. Cohn (2003)
Acta Arithmetica
Similarity: