Displaying similar documents to “Levels of Distribution and the Affine Sieve”

Primes in tuples IV: Density of small gaps between consecutive primes

Daniel Alan Goldston, János Pintz, Cem Yalçın Yıldırım (2013)

Acta Arithmetica

Similarity:

We prove that given any small but fixed η > 0, a positive proportion of all gaps between consecutive primes are smaller than η times the average gap. We show some unconditional and conditional quantitative results in this vein. In the results the dependence on η is given explicitly, providing a new quantitative way, in addition to that of the first paper in this series, of measuring the effect of the knowledge on the level of distribution of primes.

Gaps between primes in Beatty sequences

Roger C. Baker, Liangyi Zhao (2016)

Acta Arithmetica

Similarity:

We study the gaps between primes in Beatty sequences following the methods in the recent breakthrough by Maynard (2015).

A higher rank Selberg sieve and applications

Akshaa Vatwani (2018)

Czechoslovak Mathematical Journal

Similarity:

We develop an axiomatic formulation of the higher rank version of the classical Selberg sieve. This allows us to derive a simplified proof of the Zhang and Maynard-Tao result on bounded gaps between primes. We also apply the sieve to other subsequences of the primes and obtain bounded gaps in various settings.

On pairs of Goldbach-Linnik equations with unequal powers of primes

Enxun Huang (2023)

Czechoslovak Mathematical Journal

Similarity:

It is proved that every pair of sufficiently large odd integers can be represented by a pair of equations, each containing two squares of primes, two cubes of primes, two fourth powers of primes and 105 powers of 2.