The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “[unknown]”

Holomorphic Cartan geometries and rational curves

Indranil Biswas, Benjamin McKay (2016)

Complex Manifolds

Similarity:

We prove that any compact Kähler manifold bearing a holomorphic Cartan geometry contains a rational curve just when the Cartan geometry is inherited from a holomorphic Cartan geometry on a lower dimensional compact Kähler manifold. This shows that many complex manifolds admit no or few holomorphic Cartan geometries.

On compact astheno-Kähler manifolds

Koji Matsuo, Takao Takahashi (2001)

Colloquium Mathematicae

Similarity:

We prove that every compact balanced astheno-Kähler manifold is Kähler, and that there exists an astheno-Kähler structure on the product of certain compact normal almost contact metric manifolds.

Hartogs type extension theorems on some domains in Kähler manifolds

Takeo Ohsawa (2012)

Annales Polonici Mathematici

Similarity:

Given a locally pseudoconvex bounded domain Ω, in a complex manifold M, the Hartogs type extension theorem is said to hold on Ω if there exists an arbitrarily large compact subset K of Ω such that every holomorphic function on Ω-K is extendible to a holomorphic function on Ω. It will be reported, based on still unpublished papers of the author, that the Hartogs type extension theorem holds in the following two cases: 1) M is Kähler and ∂Ω is C²-smooth and not Levi flat; 2) M is compact...

QCH Kähler manifolds with κ = 0

Włodzimierz Jelonek (2014)

Colloquium Mathematicae

Similarity:

The aim of this paper is to describe all Kähler manifolds with quasi-constant holomorphic sectional curvature with κ = 0.