Displaying similar documents to “Well-posedness issues for the Prandtl boundary layer equations”

Some Remarks on the Boundary Conditions in the Theory of Navier-Stokes Equations

Chérif Amrouche, Patrick Penel, Nour Seloula (2013)

Annales mathématiques Blaise Pascal

Similarity:

This article addresses some theoretical questions related to the choice of boundary conditions, which are essential for modelling and numerical computing in mathematical fluids mechanics. Unlike the standard choice of the well known non slip boundary conditions, we emphasize three selected sets of slip conditions, and particularly stress on the interaction between the appropriate functional setting and the status of these conditions.

On the Navier-Stokes equations with anisotropic wall slip conditions

Christiaan Le Roux (2023)

Applications of Mathematics

Similarity:

This article deals with the solvability of the boundary-value problem for the Navier-Stokes equations with a direction-dependent Navier type slip boundary condition in a bounded domain. Such problems arise when steady flows of fluids in domains with rough boundaries are approximated as flows in domains with smooth boundaries. It is proved by means of the Galerkin method that the boundary-value problem has a unique weak solution when the body force and the variability of the surface friction...

Boundary conditions on artificial frontiers for incompressible and compressible Navier-Stokes equations

Charles-Henri Bruneau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Non reflecting boundary conditions on artificial frontiers of the domain are proposed for both incompressible and compressible Navier-Stokes equations. For incompressible flows, the boundary conditions lead to a well-posed problem, convey properly the vortices without any reflections on the artificial limits and allow to compute turbulent flows at high Reynolds numbers. For compressible flows, the boundary conditions convey properly the vortices without any reflections on the artificial...

On a steady flow in a three-dimensional infinite pipe

Paweł Konieczny (2006)

Colloquium Mathematicae

Similarity:

The paper examines the steady Navier-Stokes equations in a three-dimensional infinite pipe with mixed boundary conditions (Dirichlet and slip boundary conditions). The velocity of the fluid is assumed to be constant at infinity. The main results show the existence of weak solutions with no restriction on smallness of the flux vector and boundary conditions.