Displaying similar documents to “Singularities of relativistic membranes”

On the Regularity of Alexandrov Surfaces with Curvature Bounded Below

Luigi Ambrosio, Jérôme Bertrand (2016)

Analysis and Geometry in Metric Spaces

Similarity:

In this note, we prove that on a surface with Alexandrov’s curvature bounded below, the distance derives from a Riemannian metric whose components, for any p ∈ [1, 2), locally belong to W1,p out of a discrete singular set. This result is based on Reshetnyak’s work on the more general class of surfaces with bounded integral curvature.

Singularities in drawings of singular surfaces

Alain Joets (2008)

Banach Center Publications

Similarity:

When drawing regular surfaces, one creates a concrete and visual example of a projection between two spaces of dimension 2. The singularities of the projection define the apparent contour of the surface. As a result there are two types of generic singularities: fold and cusp (Whitney singularities). The case of singular surfaces is much more complex. A priori, it is expected that new singularities may appear, resulting from the "interaction" between the singularities of the surface and...

The PDE describing constant mean curvature surfaces

Hongyou Wu (2001)

Mathematica Bohemica

Similarity:

We give an expository account of a Weierstrass type representation of the non-zero constant mean curvature surfaces in space and discuss the meaning of the representation from the point of view of partial differential equations.