Displaying similar documents to “A topological approach for protein classification”

Persistent Homology Analysis of RNA

Adane L. Mamuye, Matteo Rucco, Luca Tesei, Emanuela Merelli (2016)

Molecular Based Mathematical Biology

Similarity:

Topological data analysis has been recently used to extract meaningful information frombiomolecules. Here we introduce the application of persistent homology, a topological data analysis tool, for computing persistent features (loops) of the RNA folding space. The scaffold of the RNA folding space is a complex graph from which the global features are extracted by completing the graph to a simplicial complex via the notion of clique and Vietoris-Rips complexes. The resulting simplicial...

The homology of spaces of simple topological measures

Ø. Johansen, A. B. Rustad (2003)

Fundamenta Mathematicae

Similarity:

The simple topological measures X* on a q-space X are shown to be a superextension of X. Properties inherited from superextensions to topological measures are presented. The homology groups of various subsets of X* are calculated. For a q-space X, X* is shown to be a q-space. The homology of X* when X is the annulus is calculated. The homology of X* when X is a more general genus one space is investigated. In particular, X* for the torus is shown to have a retract homeomorphic to an...

Steenrod homology

Yu. T. Lisitsa, S. Mardešić (1986)

Banach Center Publications

Similarity:

Relationship among various Vietoris-type and microsimplicial homology theories

Takuma Imamura (2021)

Archivum Mathematicum

Similarity:

In this paper, we clarify the relationship among the Vietoris-type homology theories and the microsimplicial homology theories, where the latter are nonstandard homology theories defined by M.C. McCord (for topological spaces), T. Korppi (for completely regular topological spaces) and the author (for uniform spaces). We show that McCord’s and our homology are isomorphic for all compact uniform spaces and that Korppi’s and our homology are isomorphic for all fine uniform spaces. Our homology...