Displaying similar documents to “A New Characterization of Unichord-Free Graphs”

Requiring that Minimal Separators Induce Complete Multipartite Subgraphs

Terry A. McKee (2018)

Discussiones Mathematicae Graph Theory

Similarity:

Complete multipartite graphs range from complete graphs (with every partite set a singleton) to edgeless graphs (with a unique partite set). Requiring minimal separators to all induce one or the other of these extremes characterizes, respectively, the classical chordal graphs and the emergent unichord-free graphs. New theorems characterize several subclasses of the graphs whose minimal separators induce complete multipartite subgraphs, in particular the graphs that are 2-clique sums...

Characterizing Atoms that Result from Decomposition by Clique Separators

Terry A. McKee (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A graph is defined to be an atom if no minimal vertex separator induces a complete subgraph; thus, atoms are the graphs that are immune to clique separator decomposition. Atoms are characterized here in two ways: first using generalized vertex elimination schemes, and then as generalizations of 2-connected unichord-free graphs (the graphs in which every minimal vertex separator induces an edgeless subgraph).

Graphs of low chordality.

Chandran, L.Sunil, Lozin, Vadim V., Subramanian, C.R. (2005)

Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]

Similarity:

Factor-criticality and matching extension in DCT-graphs

Odile Favaron, Evelyne Favaron, Zdenĕk Ryjáček (1997)

Discussiones Mathematicae Graph Theory

Similarity:

The class of DCT-graphs is a common generalization of the classes of almost claw-free and quasi claw-free graphs. We prove that every even (2p+1)-connected DCT-graph G is p-extendable, i.e., every set of p independent edges of G is contained in a perfect matching of G. This result is obtained as a corollary of a stronger result concerning factor-criticality of DCT-graphs.

The crossing numbers of join products of paths with graphs of order four

Marián Klešč, Stefan Schrötter (2011)

Discussiones Mathematicae Graph Theory

Similarity:

Kulli and Muddebihal [V.R. Kulli, M.H. Muddebihal, Characterization of join graphs with crossing number zero, Far East J. Appl. Math. 5 (2001) 87-97] gave the characterization of all pairs of graphs which join product is planar graph. The crossing number cr(G) of a graph G is the minimal number of crossings over all drawings of G in the plane. There are only few results concerning crossing numbers of graphs obtained as join product of two graphs. In the paper, the exact values of crossing...

Decompositions of quadrangle-free planar graphs

Oleg V. Borodin, Anna O. Ivanova, Alexandr V. Kostochka, Naeem N. Sheikh (2009)

Discussiones Mathematicae Graph Theory

Similarity:

W. He et al. showed that a planar graph not containing 4-cycles can be decomposed into a forest and a graph with maximum degree at most 7. This degree restriction was improved to 6 by Borodin et al. We further lower this bound to 5 and show that it cannot be improved to 3.

A Characterization for 2-Self-Centered Graphs

Mohammad Hadi Shekarriz, Madjid Mirzavaziri, Kamyar Mirzavaziri (2018)

Discussiones Mathematicae Graph Theory

Similarity:

A graph is called 2-self-centered if its diameter and radius both equal to 2. In this paper, we begin characterizing these graphs by characterizing edge-maximal 2-self-centered graphs via their complements. Then we split characterizing edge-minimal 2-self-centered graphs into two cases. First, we characterize edge-minimal 2-self-centered graphs without triangles by introducing specialized bi-independent covering (SBIC) and a structure named generalized complete bipartite graph (GCBG)....

Radio Graceful Hamming Graphs

Amanda Niedzialomski (2016)

Discussiones Mathematicae Graph Theory

Similarity:

For k ∈ ℤ+ and G a simple, connected graph, a k-radio labeling f : V (G) → ℤ+ of G requires all pairs of distinct vertices u and v to satisfy |f(u) − f(v)| ≥ k + 1 − d(u, v). We consider k-radio labelings of G when k = diam(G). In this setting, f is injective; if f is also surjective onto {1, 2, . . . , |V (G)|}, then f is a consecutive radio labeling. Graphs that can be labeled with such a labeling are called radio graceful. In this paper, we give two results on the existence of radio...

Relating 2-Rainbow Domination To Roman Domination

José D. Alvarado, Simone Dantas, Dieter Rautenbach (2017)

Discussiones Mathematicae Graph Theory

Similarity:

For a graph G, let R(G) and yr2(G) denote the Roman domination number of G and the 2-rainbow domination number of G, respectively. It is known that yr2(G) ≤ R(G) ≤ 3/2yr2(G). Fujita and Furuya [Difference between 2-rainbow domination and Roman domination in graphs, Discrete Appl. Math. 161 (2013) 806-812] present some kind of characterization of the graphs G for which R(G) − yr2(G) = k for some integer k. Unfortunately, their result does not lead to an algorithm that allows to recognize...