Displaying similar documents to “Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium∗”

Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium

Gloria Faccanoni, Samuel Kokh, Grégoire Allaire (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In the present work we investigate the numerical simulation of liquid-vapor phase change in compressible flows. Each phase is modeled as a compressible fluid equipped with its own equation of state (EOS). We suppose that inter-phase equilibrium processes in the medium operate at a short time-scale compared to the other physical phenomena such as convection or thermal diffusion. This assumption provides an implicit definition of an equilibrium ...

On the effect of temperature and velocity relaxation in two-phase flow models

Pedro José Martínez Ferrer, Tore Flåtten, Svend Tollak Munkejord (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We study a two-phase pipe flow model with relaxation terms in the momentum and energy equations, driving the model towards dynamic and thermal equilibrium. These equilibrium states are characterized by the velocities and temperatures being equal in each phase. For each of these relaxation processes, we consider the limits of zero and infinite relaxation times. By expanding on previously established results, we derive a formulation of the mixture sound velocity for the thermally relaxed...

Hybrid finite volume scheme for a two-phase flow in heterogeneous porous media

Konstantin Brenner (2012)

ESAIM: Proceedings

Similarity:

We propose a finite volume method on general meshes for the numerical simulation of an incompressible and immiscible two-phase flow in porous media. We consider the case that can be written as a coupled system involving a degenerate parabolic convection-diffusion equation for the saturation together with a uniformly elliptic equation for the global pressure. The numerical scheme, which is implicit in time, allows computations in the case ...

On the effect of temperature and velocity relaxation in two-phase flow models

Pedro José Martínez Ferrer, Tore Flåtten, Svend Tollak Munkejord (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We study a two-phase pipe flow model with relaxation terms in the momentum and energy equations, driving the model towards dynamic and thermal equilibrium. These equilibrium states are characterized by the velocities and temperatures being equal in each phase. For each of these relaxation processes, we consider the limits of zero and infinite relaxation times. By expanding on previously established results, we derive a formulation of the mixture sound velocity for the thermally relaxed...