Displaying similar documents to “Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers”

Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers

John W. Barrett, Endre Süli (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain  ⊂ ℝ,  = 2 or 3, for ...

Finite element approximation of kinetic dilute polymer models with microscopic cut-off

John W. Barrett, Endre Süli (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ d , = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum...

Finite element approximation of kinetic dilute polymer models with microscopic cut-off

John W. Barrett, Endre Süli (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ d ,= 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum...