Displaying similar documents to “A nth-order shear deformation theory for composite laminates in cylindrical bending”

Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory

A. S. Sayyad, Y. M. Ghugal, N. S. Naik (2015)

Curved and Layered Structures

Similarity:

A trigonometric beam theory (TBT) is developed for the bending analysis of laminated composite and sandwich beams considering the effect of transverse shear deformation. The axial displacement field uses trigonometric function in terms of thickness coordinate to include the effect of transverse shear deformation. The transverse displacement is considered as a sum of two partial displacements, the displacement due to bending and the displacement due to transverse shearing. Governing equations...

Curved composite beam with interlayer slip loaded by radial load

István Ecsedi, Ákos József Lengyel (2015)

Curved and Layered Structures

Similarity:

Elastic two-layer curved composite beam with partial shear interaction is considered. It is assumed that each curved layer separately follows the Euler-Bernoulli hypothesis and the load slip relation for the flexible shear connection is a linear relationship. The curved composite beam at one of the end cross sections is fixed and the other end cross section is subjected by a concentrated radial load. Two cases are considered. In the first case the loaded end cross section is closed by...

Flaw identification in elastic solids: theory and experiments.

A. Gesualdo, F. Guarracino, V. Mallardo, V. Minutolo, L. Nunziante (1997)

Extracta Mathematicae

Similarity:

In this work the problem of identificating flaws or voids in elastic solids is addressed both from a theoretical and an experimental point of view. Following a so called inverse procedure, which is based on appropriately devised experiments and a particular bounding of the strain energy, a gap functional for flaw identification is proposed.