Editors’ Summary of the Special Issue dedicated to the 5th International Conference on Matrix Analysis and Applications
Shaun Fallat, Shahla Nasserasr, Qing-Wen Wang, Fuzhen Zhang (2016)
Special Matrices
Similarity:
Shaun Fallat, Shahla Nasserasr, Qing-Wen Wang, Fuzhen Zhang (2016)
Special Matrices
Similarity:
Heinz Neudecker (2000)
Qüestiió
Similarity:
This note contains a transparent presentation of the matrix Haffian. A basic theorem links this matrix and the differential ofthe matrix function under investigation, viz ∇F(X) and dF(X). Frequent use is being made of matrix derivatives as developed by Magnus and Neudecker.
Mazanik, S.A. (1998)
Memoirs on Differential Equations and Mathematical Physics
Similarity:
M. Rajesh Kannan, K.C. Sivakumar (2014)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
Let A and B be M-matrices satisfying A ≤ B and J = [A,B] be the set of all matrices C such that A ≤ C ≤ B, where the order is component wise. It is rather well known that if A is an M-matrix and B is an invertible M-matrix and A ≤ B, then aA + bB is an invertible M-matrix for all a,b > 0. In this article, we present an elementary proof of a stronger version of this result and study corresponding results for certain other classes as well.
Chao Ma (2017)
Open Mathematics
Similarity:
Let x, y be two distinct real numbers. An {x, y}-matrix is a matrix whose entries are either x or y. We determine the possible numbers of x’s in an {x, y}-matrix with a given rank. Our proof is constructive.
Miroslav Fiedler (2003)
Mathematica Bohemica
Similarity:
We present some results on generalized inverses and their application to generalizations of the Sherman-Morrison-Woodbury-type formulae.
João Lita da Silva, António Manuel Oliveira (2009)
Discussiones Mathematicae Probability and Statistics
Similarity:
A matrix generalization of Kronecker's lemma is presented with assumptions that make it possible not only the unboundedness of the condition number considered by Anderson and Moore (1976) but also other sequences of real matrices, not necessarily monotone increasing, symmetric and nonnegative definite. A useful matrix decomposition and a well-known equivalent result about convergent series are used in this generalization.
Lubomír Kubáček (1969)
Matematický časopis
Similarity:
Duanmei Zhou, Guoliang Chen, Jiu Ding (2017)
Open Mathematics
Similarity:
Let A = PQT, where P and Q are two n × 2 complex matrices of full column rank such that QTP is singular. We solve the quadratic matrix equation AXA = XAX. Together with a previous paper devoted to the case that QTP is nonsingular, we have completely solved the matrix equation with any given matrix A of rank-two.