Displaying similar documents to “The Steiner Wiener Index of A Graph”

On the Maximum and Minimum Sizes of a Graph with Givenk-Connectivity

Yuefang Sun (2017)

Discussiones Mathematicae Graph Theory

Similarity:

The concept of k-connectivity κk(G), introduced by Chartrand in 1984, is a generalization of the cut-version of the classical connectivity. For an integer k ≥ 2, the k-connectivity of a connected graph G with order n ≥ k is the smallest number of vertices whose removal from G produces a graph with at least k components or a graph with fewer than k vertices. In this paper, we get a sharp upper bound for the size of G with κk(G) = t, where 1 ≤ t ≤ n − k and k ≥ 3; moreover, the unique...

The Distance Magic Index of a Graph

Aloysius Godinho, Tarkeshwar Singh, S. Arumugam (2018)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph of order n and let S be a set of positive integers with |S| = n. Then G is said to be S-magic if there exists a bijection ϕ : V (G) → S satisfying ∑x∈N(u) ϕ(x) = k (a constant) for every u ∈ V (G). Let α(S) = max{s : s ∈ S}. Let i(G) = min α(S), where the minimum is taken over all sets S for which the graph G admits an S-magic labeling. Then i(G) − n is called the distance magic index of the graph G. In this paper we determine the distance magic index of trees and complete...

The Dynamics of the Forest Graph Operator

Suresh Dara, S.M. Hegde, Venkateshwarlu Deva, S.B. Rao, Thomas Zaslavsky (2016)

Discussiones Mathematicae Graph Theory

Similarity:

In 1966, Cummins introduced the “tree graph”: the tree graph T(G) of a graph G (possibly infinite) has all its spanning trees as vertices, and distinct such trees correspond to adjacent vertices if they differ in just one edge, i.e., two spanning trees T1 and T2 are adjacent if T2 = T1 − e + f for some edges e ∈ T1 and f ∉ T1. The tree graph of a connected graph need not be connected. To obviate this difficulty we define the “forest graph”: let G be a labeled graph of order α, finite...

Wiener index of generalized stars and their quadratic line graphs

Andrey A. Dobrynin, Leonid S. Mel'nikov (2006)

Discussiones Mathematicae Graph Theory

Similarity:

The Wiener index, W, is the sum of distances between all pairs of vertices in a graph G. The quadratic line graph is defined as L(L(G)), where L(G) is the line graph of G. A generalized star S is a tree consisting of Δ ≥ 3 paths with the unique common endvertex. A relation between the Wiener index of S and of its quadratic graph is presented. It is shown that generalized stars having the property W(S) = W(L(L(S)) exist only for 4 ≤ Δ ≤ 6. Infinite families of generalized stars with this...