Displaying similar documents to “1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs”

Gromov hyperbolic cubic graphs

Domingo Pestana, José Rodríguez, José Sigarreta, María Villeta (2012)

Open Mathematics

Similarity:

If X is a geodesic metric space and x 1; x 2; x 3 ∈ X, a geodesic triangle T = {x 1; x 2; x 3} is the union of the three geodesics [x 1 x 2], [x 2 x 3] and [x 3 x 1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. We denote by δ(X) the sharp hyperbolicity constant of X, i.e., δ(X) = inf {δ ≥ 0: X is δ-hyperbolic}. We obtain information about the hyperbolicity...

A Note on Longest Paths in Circular Arc Graphs

Felix Joos (2015)

Discussiones Mathematicae Graph Theory

Similarity:

As observed by Rautenbach and Sereni [SIAM J. Discrete Math. 28 (2014) 335-341] there is a gap in the proof of the theorem of Balister et al. [Combin. Probab. Comput. 13 (2004) 311-317], which states that the intersection of all longest paths in a connected circular arc graph is nonempty. In this paper we close this gap.

The hyperbolicity constant of infinite circulant graphs

José M. Rodríguez, José M. Sigarreta (2017)

Open Mathematics

Similarity:

If X is a geodesic metric space and x1, x2, x3 ∈ X, a geodesic triangle T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. Deciding whether or not a graph is hyperbolic is usually very difficult; therefore, it is interesting to find classes of graphs which are hyperbolic. A graph...

Planar Graphs

Hassler Whitney (1933)

Fundamenta Mathematicae

Similarity: