Displaying similar documents to “A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity∗”

A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity

Yongxing Shen, Adrian J. Lew (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We introduce a family of mixed discontinuous Galerkin (DG) finite element methods for nearly and perfectly incompressible linear elasticity. These mixed methods allow the choice of polynomials of any order  ≥ 1 for the approximation of the displacement field, and of order or  − 1 for the pressure space, and are stable for any positive value of the stabilization parameter. We prove the optimal convergence of the displacement and stress...

A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity

Yongxing Shen, Adrian J. Lew (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We introduce a family of mixed discontinuous Galerkin (DG) finite element methods for nearly and perfectly incompressible linear elasticity. These mixed methods allow the choice of polynomials of any order  ≥ 1 for the approximation of the displacement field, and of order or  − 1 for the pressure space, and are stable for any positive value of the stabilization parameter. We prove the optimal convergence of the displacement and stress fields in both cases, with error estimates that...

Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case

Paul Houston, Ilaria Perugia, Anna Schneebeli, Dominik Schötzau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We present and analyze an interior penalty method for the numerical discretization of the indefinite time-harmonic Maxwell equations in mixed form. The method is based on the mixed discretization of the curl-curl operator developed in [Houston , (2005) 325–356] and can be understood as a non-stabilized variant of the approach proposed in [Perugia , (2002) 4675–4697]. We show the well-posedness of this approach and derive optimal error estimates in...

Optimal convergence of a discontinuous-Galerkin-based immersed boundary method

Adrian J. Lew, Matteo Negri (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We prove the optimal convergence of a discontinuous-Galerkin-based immersed boundary method introduced earlier [Lew and Buscaglia, (2008) 427–454]. By switching to a discontinuous Galerkin discretization near the boundary, this method overcomes the suboptimal convergence rate that may arise in immersed boundary methods when strongly imposing essential boundary conditions. We consider a model Poisson's problem with homogeneous boundary conditions over two-dimensional...

Optimal convergence of a discontinuous-Galerkin-based immersed boundary method

Adrian J. Lew, Matteo Negri (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We prove the optimal convergence of a discontinuous-Galerkin-based immersed boundary method introduced earlier [Lew and Buscaglia, (2008) 427–454]. By switching to a discontinuous Galerkin discretization near the boundary, this method overcomes the suboptimal convergence rate that may arise in immersed boundary methods when strongly imposing essential boundary conditions. We consider a model Poisson's problem with homogeneous boundary conditions over two-dimensional...

Basic principles of mixed Virtual Element Methods

F. Brezzi, Richard S. Falk, L. Donatella Marini (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The aim of this paper is to give a simple, introductory presentation of the extension of the Virtual Element Method to the discretization of (div)-conforming vector fields (or, more generally, of ( − 1) − ). As we shall see, the methods presented here can be seen as extensions of the so-called BDM family to deal with more general element geometries (such as polygons with an almost arbitrary geometry). For the sake of simplicity, we limit ourselves to the 2-dimensional case, with the...

Stabilization methods in relaxed micromagnetism

Stefan A. Funken, Andreas Prohl (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The magnetization of a ferromagnetic sample solves a non-convex variational problem, where its relaxation by convexifying the energy density resolves relevant macroscopic information. The numerical analysis of the relaxed model has to deal with a constrained convex but degenerated, nonlocal energy functional in mixed formulation for magnetic potential and magnetization . In [C. Carstensen and A. Prohl, (2001) 65–99], the conforming -element in spatial dimensions...

error analysis for the Crank-Nicolson method for linear Schrödinger equations

Irene Kyza (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We prove error estimates of optimal order for linear Schrödinger-type equations in the ( )- and the ( )-norm. We discretize only in time by the Crank-Nicolson method. The direct use of the reconstruction technique, as it has been proposed by Akrivis in [ (2006) 511–531], leads to upper bounds that are of optimal order in the ( )-norm, but of suboptimal order in the ...