Displaying similar documents to “Efficient computation of delay differential equations with highly oscillatory terms”

Efficient computation of delay differential equations with highly oscillatory terms

Marissa Condon, Alfredo Deaño, Arieh Iserles, Karolina Kropielnicka (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper is concerned with the asymptotic expansion and numerical solution of systems of linear delay differential equations with highly oscillatory forcing terms. The computation of such problems using standard numerical methods is exceedingly slow and inefficient, indeed standard software is practically useless for this purpose. We propose an alternative, consisting of an asymptotic expansion of the solution, where each term can be derived either by recursion or by solving a non-oscillatory...

Efficient computation of delay differential equations with highly oscillatory terms

Marissa Condon, Alfredo Deaño, Arieh Iserles, Karolina Kropielnicka (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This paper is concerned with the asymptotic expansion and numerical solution of systems of linear delay differential equations with highly oscillatory forcing terms. The computation of such problems using standard numerical methods is exceedingly slow and inefficient, indeed standard software is practically useless for this purpose. We propose an alternative, consisting of an asymptotic expansion of the solution, where each term can be derived either by recursion or by solving a non-oscillatory...

Oscillatory behaviour of solutions of forced neutral differential equations

N. Parhi, P. K. Mohanty (1996)

Annales Polonici Mathematici

Similarity:

Sufficient conditions are obtained for oscillation of all solutions of a class of forced nth order linear and nonlinear neutral delay differential equations. Also, asymptotic behaviour of nonoscillatory solutions of a class of forced first order neutral equations is studied.