Explicit upper bounds for |L(1,χ)| for primitive even Dirichlet characters
Stéphane Louboutin (2002)
Acta Arithmetica
Similarity:
Stéphane Louboutin (2002)
Acta Arithmetica
Similarity:
Kazuhito Kozuka (2011)
Acta Arithmetica
Similarity:
Hirofumi Tsumura (2004)
Acta Arithmetica
Similarity:
Crandall, Richard E., Buhler, Joe P. (1994)
Experimental Mathematics
Similarity:
G. Molteni (2010)
Acta Arithmetica
Similarity:
G. Molteni (2010)
Acta Arithmetica
Similarity:
Takuya Okamoto, Tomokazu Onozuka (2015)
Acta Arithmetica
Similarity:
We give a method of obtaining explicit formulas for various mean values of Dirichlet L-functions which are expressed in terms of the Riemann zeta-function, the Euler function and Jordan's totient functions. Applying those results to mean values of Dirichlet L-functions, we also give an explicit formula for certain mean values of double Dirichlet L-functions.
Bruce Berndt (1975)
Acta Arithmetica
Similarity:
Huaning Liu, Wenpeng Zhang (2006)
Acta Arithmetica
Similarity:
Boyadzhiev, Khristo N. (2002)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Bailey, David H., Borwein, Jonathan M., Girgensohn, Roland (1994)
Experimental Mathematics
Similarity:
Yao Lin Ong, Minking Eie, Chuan-Sheng Wei (2010)
Acta Arithmetica
Similarity:
Wenpeng Zhang, Weili Yao (2004)
Acta Arithmetica
Similarity:
Huaning Liu, Wenguang Zhai (2012)
Acta Arithmetica
Similarity:
Yu. Matiyasevich, F. Saidak, P. Zvengrowski (2014)
Acta Arithmetica
Similarity:
As usual, let s = σ + it. For any fixed value of t with |t| ≥ 8 and for σ < 0, we show that |ζ(s)| is strictly decreasing in σ, with the same result also holding for the related functions ξ of Riemann and η of Euler. The following inequality related to the monotonicity of all three functions is proved: ℜ (η'(s)/η(s)) < ℜ (ζ'(s)/ζ(s)) < ℜ (ξ'(s)/ξ(s)). It is also shown that extending the above monotonicity result for |ζ(s)|, |ξ(s)|, or |η(s)|...
Uckath-Variyath Balakrishnan (1984)
Mathematische Zeitschrift
Similarity: