Displaying similar documents to “The distribution of inverses modulo a prime in short intervals”

On the Properties of the Möbius Function

Magdalena Jastrzebska, Adam Grabowski (2006)

Formalized Mathematics

Similarity:

We formalized some basic properties of the Möbius function which is defined classically as [...] as e.g., its multiplicativity. To enable smooth reasoning about the sum of this number-theoretic function, we introduced an underlying many-sorted set indexed by the set of natural numbers. Its elements are just values of the Möbius function.The second part of the paper is devoted to the notion of the radical of number, i.e. the product of its all prime factors.The formalization (which is...

Pocklington's Theorem and Bertrand's Postulate

Marco Riccardi (2006)

Formalized Mathematics

Similarity:

The first four sections of this article include some auxiliary theorems related to number and finite sequence of numbers, in particular a primality test, the Pocklington's theorem (see [19]). The last section presents the formalization of Bertrand's postulate closely following the book [1], pp. 7-9.

The mantissa distribution of the primorial numbers

Bruno Massé, Dominique Schneider (2014)

Acta Arithmetica

Similarity:

We show that the sequence of mantissas of the primorial numbers Pₙ, defined as the product of the first n prime numbers, is distributed following Benford's law. This is done by proving that the values of the first Chebyshev function at prime numbers are uniformly distributed modulo 1. We provide a convergence rate estimate. We also briefly treat some other sequences defined in the same way as Pₙ.

On the unimodal character of the frequency function of the largest prime factor

Jean-Marie De Koninck, Jason Pierre Sweeney (2001)

Colloquium Mathematicae

Similarity:

The main objective of this paper is to analyze the unimodal character of the frequency function of the largest prime factor. To do that, let P(n) stand for the largest prime factor of n. Then define f(x,p): = #{n ≤ x | P(n) = p}. If f(x,p) is considered as a function of p, for 2 ≤ p ≤ x, the primes in the interval [2,x] belong to three intervals I₁(x) = [2,v(x)], I₂(x) = ]v(x),w(x)[ and I₃(x) = [w(x),x], with v(x) < w(x), such that f(x,p) increases for p ∈ I₁(x), reaches its maximum...