Additive properties of a pair of sequences
Fabricio Benevides, Jonathan Hulgan, Nathan Lemons, Cory Palmer, Ago-Erik Riet, Jeffrey Paul Wheeler (2009)
Acta Arithmetica
Similarity:
Fabricio Benevides, Jonathan Hulgan, Nathan Lemons, Cory Palmer, Ago-Erik Riet, Jeffrey Paul Wheeler (2009)
Acta Arithmetica
Similarity:
Akio Fujii (1985)
Banach Center Publications
Similarity:
Sándor Z. Kiss (2009)
Acta Arithmetica
Similarity:
Gergely Dombi (2002)
Acta Arithmetica
Similarity:
Roger Crocker (1969)
Colloquium Mathematicae
Similarity:
Katalin Kovács (1998)
Acta Mathematica et Informatica Universitatis Ostraviensis
Similarity:
W. Narkiewicz (1974)
Colloquium Mathematicae
Similarity:
I. Kátai (1977)
Colloquium Mathematicae
Similarity:
A. Ivic, Jean-Marie De Koninck (1979/80)
Manuscripta mathematica
Similarity:
Finch, Steven R. (1992)
Experimental Mathematics
Similarity:
Xingwu Xia, Yongke Qu, Guoyou Qian (2014)
Colloquium Mathematicae
Similarity:
Let G be an additive abelian group of order k, and S be a sequence over G of length k+r, where 1 ≤ r ≤ k-1. We call the sum of k terms of S a k-sum. We show that if 0 is not a k-sum, then the number of k-sums is at least r+2 except for S containing only two distinct elements, in which case the number of k-sums equals r+1. This result improves the Bollobás-Leader theorem, which states that there are at least r+1 k-sums if 0 is not a k-sum.