Displaying similar documents to “Rank generating functions as weakly holomorphic modular forms”

Mock modular forms and singular combinatorial series

Amanda Folsom, Susie Kimport (2013)

Acta Arithmetica

Similarity:

A celebrated result of Bringmann and Ono shows that the combinatorial rank generating function exhibits automorphic properties after being completed by the addition of a non-holomorphic integral. Since then, automorphic properties of various related combinatorial families have been studied. Here, extending work of Andrews and Bringmann, we study general infinite families of combinatorial q-series pertaining to k-marked Durfee symbols, in which we allow additional singularities. We show...

Linear relations between modular forms for Г 0 + (p)

SoYoung Choi, Chang Heon Kim (2015)

Open Mathematics

Similarity:

We find linear relations among the Fourier coefficients of modular forms for the group Г0+(p) of genus zero. As an application of these linear relations, we derive congruence relations satisfied by the Fourier coefficients of normalized Hecke eigenforms.

On arbitrary products of eigenforms

Arvind Kumar, Jaban Meher (2016)

Acta Arithmetica

Similarity:

We characterize all the cases in which products of arbitrary numbers of nearly holomorphic eigenforms and products of arbitrary numbers of quasimodular eigenforms for the full modular group SL₂(ℤ) are again eigenforms.

Asymptotic formulas for the coefficients of certain automorphic functions

Jaban Meher, Karam Deo Shankhadhar (2015)

Acta Arithmetica

Similarity:

We derive asymptotic formulas for the coefficients of certain classes of weakly holomorphic Jacobi forms and weakly holomorphic modular forms (not necessarily of integral weight) without using the circle method. Then two applications of these formulas are given. Namely, we estimate the growth of the Fourier coefficients of two important weak Jacobi forms of index 1 and non-positive weights and obtain an asymptotic formula for the Fourier coefficients of the modular functions θ k / η l for all...

An integrality criterion for elliptic modular forms

Andrea Mori (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Let f be an elliptic modular form level of N. We present a criterion for the integrality of f at primes not dividing N. The result is in terms of the values at CM points of the forms obtained applying to f the iterates of the Maaß differential operators.