Zeros of -functions of elliptic curves. (Zéros des fonctions de courbes elliptiques.)
Fermigier, Stéfane (1992)
Experimental Mathematics
Similarity:
Fermigier, Stéfane (1992)
Experimental Mathematics
Similarity:
Aaron Levin (2008)
Acta Arithmetica
Similarity:
Wilhelm Stoll (1988)
Mathematische Annalen
Similarity:
Rose, Harvey E. (2000)
Experimental Mathematics
Similarity:
Alf Van Der Poorten (1980)
Mémoires de la Société Mathématique de France
Similarity:
Ritabrata Munshi (2009)
Acta Arithmetica
Similarity:
Rubin, Karl, Silverberg, Alice (2000)
Experimental Mathematics
Similarity:
Bo Berndtsson (1980)
Mathematische Annalen
Similarity:
Amit Ghosh, Peter Sarnak (2012)
Journal of the European Mathematical Society
Similarity:
This note is concerned with the zeros of holomorphic Hecke cusp forms of large weight on the modular surface. The zeros of such forms are symmetric about three geodesic segments and we call those zeros that lie on these segments, real. Our main results give estimates for the number of real zeros as the weight goes to infinity.
Cremona, John E., Mazur, Barry (2000)
Experimental Mathematics
Similarity:
Clemens Fuchs, Rafael von Känel, Gisbert Wüstholz (2011)
Acta Arithmetica
Similarity:
Gang Yu (2005)
Acta Arithmetica
Similarity:
Kevin James, Gang Yu (2006)
Acta Arithmetica
Similarity:
Lisa Berger (2012)
Acta Arithmetica
Similarity:
Joseph H. Silverman (1987)
Journal für die reine und angewandte Mathematik
Similarity:
Ruthi Hortsch (2016)
Acta Arithmetica
Similarity:
We give an asymptotic formula for the number of elliptic curves over ℚ with bounded Faltings height. Silverman (1986) showed that the Faltings height for elliptic curves over number fields can be expressed in terms of modular functions and the minimal discriminant of the elliptic curve. We use this to recast the problem as one of counting lattice points in a particular region in ℝ².
Andrej Dujella, Kálmán Győry, Ákos Pintér (2012)
Acta Arithmetica
Similarity: