On the diophantine equation x(x-1)...(x-(m-1)) = λy(y-1 )...(y-(n-1)) + l
Csaba Rakaczki (2003)
Acta Arithmetica
Similarity:
Csaba Rakaczki (2003)
Acta Arithmetica
Similarity:
M. Filaseta, F. Luca, P. Stănică, R. G. Underwood (2007)
Acta Arithmetica
Similarity:
Sz. Tengely (2003)
Acta Arithmetica
Similarity:
Susil Kumar Jena (2014)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
The Diophantine equation A² + nB⁴ = C³ has infinitely many integral solutions A, B, C for any fixed integer n. The case n = 0 is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.
Wolfgang M. Schmidt (2004)
Acta Arithmetica
Similarity:
Thanases Pheidas (2004)
Fundamenta Mathematicae
Similarity:
We prove that the positive-existential theory of addition and divisibility in a ring of polynomials in two variables A[t₁,t₂] over an integral domain A is undecidable and that the universal-existential theory of A[t₁] is undecidable.
P. Ribenboim (1985)
Journal für die reine und angewandte Mathematik
Similarity:
Shin-ichi Katayama, Claude Levesque (2003)
Acta Arithmetica
Similarity:
H. Kleiman (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Ernst, Bruno (1996)
General Mathematics
Similarity:
Alan Filipin (2009)
Acta Arithmetica
Similarity:
Yang Hai, P. G. Walsh (2010)
Acta Arithmetica
Similarity:
Martin Klazar, Florian Luca (2003)
Acta Arithmetica
Similarity:
W. J. Ellison (1970-1971)
Séminaire de théorie des nombres de Bordeaux
Similarity:
Jianhua Chen (2001)
Acta Arithmetica
Similarity:
S. Akhtari, A. Togbé, P. G. Walsh (2009)
Acta Arithmetica
Similarity:
S. Akhtari, A. Togbé, P. G. Walsh (2008)
Acta Arithmetica
Similarity:
Pingzhi Yuan, Jiagui Luo (2010)
Acta Arithmetica
Similarity:
Yong Zhang (2016)
Colloquium Mathematicae
Similarity:
Let f ∈ ℚ [X] be a polynomial without multiple roots and with deg(f) ≥ 2. We give conditions for f(X) = AX² + BX + C such that the Diophantine equation f(x)f(y) = f(z)² has infinitely many nontrivial integer solutions and prove that this equation has a rational parametric solution for infinitely many irreducible cubic polynomials. Moreover, we consider f(x)f(y) = f(z)² for quartic polynomials.
Pingzhi Yuan (2004)
Acta Arithmetica
Similarity:
P. Hubert, A. Messaoudi (2006)
Acta Arithmetica
Similarity:
Muriefah, Fadwa S.Abu, Bugeaud, Yann (2006)
Revista Colombiana de Matemáticas
Similarity: