On the diophantine equation x(x-1)...(x-(m-1)) = λy(y-1 )...(y-(n-1)) + l
Csaba Rakaczki (2003)
Acta Arithmetica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Csaba Rakaczki (2003)
Acta Arithmetica
Similarity:
M. Filaseta, F. Luca, P. Stănică, R. G. Underwood (2007)
Acta Arithmetica
Similarity:
Sz. Tengely (2003)
Acta Arithmetica
Similarity:
Susil Kumar Jena (2014)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
The Diophantine equation A² + nB⁴ = C³ has infinitely many integral solutions A, B, C for any fixed integer n. The case n = 0 is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.
Wolfgang M. Schmidt (2004)
Acta Arithmetica
Similarity:
Thanases Pheidas (2004)
Fundamenta Mathematicae
Similarity:
We prove that the positive-existential theory of addition and divisibility in a ring of polynomials in two variables A[t₁,t₂] over an integral domain A is undecidable and that the universal-existential theory of A[t₁] is undecidable.
P. Ribenboim (1985)
Journal für die reine und angewandte Mathematik
Similarity:
Shin-ichi Katayama, Claude Levesque (2003)
Acta Arithmetica
Similarity:
H. Kleiman (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Ernst, Bruno (1996)
General Mathematics
Similarity:
Alan Filipin (2009)
Acta Arithmetica
Similarity:
Yang Hai, P. G. Walsh (2010)
Acta Arithmetica
Similarity:
Martin Klazar, Florian Luca (2003)
Acta Arithmetica
Similarity:
W. J. Ellison (1970-1971)
Séminaire de théorie des nombres de Bordeaux
Similarity:
Jianhua Chen (2001)
Acta Arithmetica
Similarity:
S. Akhtari, A. Togbé, P. G. Walsh (2009)
Acta Arithmetica
Similarity:
S. Akhtari, A. Togbé, P. G. Walsh (2008)
Acta Arithmetica
Similarity:
Pingzhi Yuan, Jiagui Luo (2010)
Acta Arithmetica
Similarity:
Yong Zhang (2016)
Colloquium Mathematicae
Similarity:
Let f ∈ ℚ [X] be a polynomial without multiple roots and with deg(f) ≥ 2. We give conditions for f(X) = AX² + BX + C such that the Diophantine equation f(x)f(y) = f(z)² has infinitely many nontrivial integer solutions and prove that this equation has a rational parametric solution for infinitely many irreducible cubic polynomials. Moreover, we consider f(x)f(y) = f(z)² for quartic polynomials.
Pingzhi Yuan (2004)
Acta Arithmetica
Similarity:
P. Hubert, A. Messaoudi (2006)
Acta Arithmetica
Similarity:
Muriefah, Fadwa S.Abu, Bugeaud, Yann (2006)
Revista Colombiana de Matemáticas
Similarity: